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ABSTRACT 

This study focuses on advancements in three broad aspects of active surface wave 

methods: modeling, testing, and inversion. Transfer matrix, global matrix, and stiffness 

matrix methods were employed to comprehensively model layered structures with half-

space boundary conditions for soil structures with increasing/anomalous stiffness 

profiles, or pavement structures with decreasing stiffness profiles and leaky waves. All 

three methods were programmed in MATLAB as forward algorithms. The finite element 

method was adopted to simulate surface wave testing for various half-space site 

structures with absorbing layers using increasing damping technique. An improved 

experimental dispersion analysis scheme was developed by scanning phase-velocity and 

intercept-time followed by a power-spectrum analysis to minimize side lobes and 

increase sharpness of dispersion images. The multichannel simulation with one receiver 

(MSOR) method was applied to capture the dispersion characteristics of soil sites. The 

reciprocity principle for surface Rayleigh waves was verified by comparing dispersion 

images from MSOR and multichannel analysis of surface waves (MASW) testing at the 

same site with the same testing system. A multichannel surface wave acquisition system 

was developed to improve the accuracy of measuring high-frequency and high-velocity 

dispersion data on pavement sites. A minimally-invasive multimodal surface wave 

(MMSW) method was proposed to measure multi-mode dispersion data of Rayleigh 

waves by using either embedded receivers at various depths to record surface wave 

motions generated from moving impacts on the ground surface or using a multichannel 

seismograph with an array of geophones on the soil surface for measuring surface wave 

motions caused by Standard Penetration Test hammer blows at various depths in a 
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borehole. Stiffness matrix and finite element simulations of the MMSW method were 

employed to identify the critical geophone depths for optimum measurement of higher-

mode motions. A hybrid genetic-simulated-annealing (GSA) algorithm was applied to 

solve multiple minimization and non-linear optimization problems to match the 

theoretical dispersion curves against their experimental counterparts. Results from 

simulation and real-world studies demonstrate that the advancements made in the three 

aspects of surface wave methods can improve the accuracy of surface wave testing results 

with higher resolution of experimental dispersion data, more complete multi-modal 

dispersion data, and higher certainty of inversion. 
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 INTRODUCTION CHAPTER 1.

Many civil engineering problems involve layered media, such as soil sites, 

pavements, bridge decks, and floor slabs. Nondestructive surface wave testing 

encompasses a variety of methods to determine the material properties or conditions of 

such media. Applications of surface wave testing include seismic site profiling for 

seismic design of foundations and structures, and condition assessment of existing 

pavements and structural members. Therefore, the ability to nondestructively determine 

the stiffness profile of layered media is critical for engineering design, safety assessment, 

and quality assurance/quality control.  

As an effective nondestructive technique for stiffness profiling, active surface 

wave methods typically consist of three steps—testing, modeling, and inversion. Each 

step plays a significant role in the accuracy of the final estimated stiffness profiles. This 

chapter includes a background and literature review on current approaches and 

limitations to each of these steps, and presents research objectives and organization of the 

dissertation.  

1.1 Background 

In 1885, Lord Rayleigh first predicted the existence of Rayleigh surface waves, 

which are commonly recognized as the most destructive type of waves in earthquakes. 

Significant advances in understanding these surface waves were contributed through 

persistent studies by Sezawa (1938), Picket (1945), Van der Poel (1951), Jones (1955, 

1958, 1962), Press and Dobrin (1956), Heukelom and Foster (1960), and Vidale (1964), 

whose works led to the development of the steady state vibration method, also referred to 

as the Continuous Surface Wave (CSW) method. The CSW method was a milestone that 
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marked the beginning of tests to employ active nondestructive surface waves. However, 

research interest in this method did not grow significantly until the beginning of the 

1980s, many years after development of the Fast Fourier Transform (FFT) algorithm by 

Cooley and Tukey (1965) led to a boom in research applications which remains strong 

today.  

Employing tools of the FFT and modern computer hardware, a research team at 

The University of Texas at Austin developed the Spectral Analysis of Surface Waves 

(SASW) method, which is still used widely in geotechnical engineering, pavement 

engineering, and near-surface seismology (e.g., see Heisey et al. 1982, Nazarian 1984, 

Rix 1988, and Stokoe et al. 1994). The University of Kansas, as detailed in studies by 

Park et al. (1998, 1999a), and Xia et al. (1999), developed a more recent improved 

technique named the Multichannel Analysis of Surface Waves (MASW) method. 

1.2 Literature Review 

1.2.1 Rayleigh waves 

Rayleigh (1885) first investigated the behavior of surface waves travelling along 

the traction-free surface of a half-space medium, and noticed the importance of the waves 

in earthquakes and the dynamic behavior of elastic solids. The generalized Rayleigh 

waves include Stoneley, Scholte, and quasi-Rayleigh waves. Stoneley (1924) proved that 

a type of wave can exist at solid-solid interfaces under very restricted conditions. Scholte 

(1947) found that Rayleigh-type waves also travelled along fluid-solid interfaces. 

Viktorov (1967) demonstrated that quasi-Rayleigh waves exist in an elastic finite layer, 

due to the interaction of the A0 and S0 modes of Lamb waves. The current research study 
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will primarily make use of Rayleigh waves for application to seismic site profiling of 

soils and quasi-Rayleigh waves for application to condition assessment of pavements. 

1.2.2 Surface wave testing methods and experimental dispersion analysis 

Before Cooley and Tukey (1965) developed the FFT algorithm to decompose 

arbitrarily time-varying signals into harmonic components, Van der Poel (1951), 

Heukelom and Foster (1960), Jones (1955, 1958, and 1962) and Vidale (1964) first 

developed the steady state vibration CSW method for geotechnical-scale seismic site 

characterization. The CSW method involves recording the harmonic ground surface 

velocity, using a receiver, due to continuous excitation caused by a harmonic vibrator 

operating at a fixed frequency (f). The receiver is incrementally moved away from the 

vibrator to determine the corresponding wavelength (λ) of surface motion, indicated by 

the smallest distance for which two measurement points vibrate in-phase. The test is then 

repeated over a range of frequencies to obtain the dispersion curve, which characterizes 

the phase velocity (Vph) as a function of frequency through the relation Vph= λf.  

Making use of the FFT algorithm, Heisey et al. (1982), Nazarian (1984), Rix 

(1988), and Stokoe et al. (1994) developed the SASW method, which employs two 

receivers at a predetermined separation (ΔD) to record the signals generated by a transient 

impact. The cross-power spectrum of the receivers is then used to determine the phase 

difference (ΔΦf) between the two signals as a function of frequency, from which the 

dispersion curve is calculated as Vph= ΔD/( ΔΦf/(360°×f )). The separation distance is 

then varied to measure surface waves with various wavelengths that depend upon the 

properties of media at various depths.  
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Park et al. (1998, 1999a) proposed the MASW method to speed up surface wave 

testing by borrowing concepts from refraction testing in seismology. The MASW method 

requires a string of a dozen or more receivers to simultaneously record signals from a 

transient impact (i.e., shot gathers), from which the dispersion curve is calculated using a 

phase-velocity scanning scheme (Park et al. 1998). This is still the most popular 

algorithm used in surface wave programs, such as SurfSeis (KGS 2010) and 

SeisImager/SW (Geometics 2013). 

When the length of testing spread has the same order of magnitude as the testing 

depth of interest, all of the above methods can only provide a single apparent dispersion 

curve, which is comprised of a fundamental-mode or a combination of several modes 

(e.g., Nazarian 1984, Guncunski and Woods 1992, Stokoe et al. 1994, Park et al. 1999a). 

In MASW testing, the experimental dispersion image is usually accompanied by many 

side lobes and aliasing (e.g., Park et al. 2001a, Ryden et al. 2004, Tran and Hiltunen 

2008, Obando et al. 2010).  

1.2.3 Inversion 

Using the CSW method, Heukelom and Forster (1960) first determined 

experimentally the direct relationship between the dispersion curve and the media profile 

(i.e., shear-wave velocity and layer thickness), as shown in Figure 1.1. 
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Figure 1.1 Wave velocity observed on stratified soil, as a function of frequency and 
depth (from Heukelum and Foster 1960). The transitions in phase velocity occur at 

wavelengths of approximately twice the depth of the interfaces. 

A more comprehensive scheme is to calculate a theoretical dispersion image by 

forward modeling for an initial estimate of the material profile (e.g., Nazarian 1984, 

Lowe 1995, Ryden and Park 2006), then match the theoretical dispersion image to the 

experimental counterpart through optimization algorithms, such as the Levenberg-

Marquardt (L-M) method (e.g., Nazarian et al. 1995, Xia et al. 1999), genetic algorithm 

(GA) method (e.g., Yamanaka and Ishida 1996, Yamanaka 2005, Pezeshk and Zarrabi 

2005), or simulated annealing (SA) method (e.g., Iglesias et al. 2001, Ryden and Park 
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2006). The parameters typically varied in the optimization schemes include layer 

thicknesses, shear wave velocities, and number of layers. 

Inverting the assumed material profiles to obtain the theoretical dispersion images 

presents a number of challenges that must be overcome, such as numerical instability at 

high frequencies, accounting for complex wavenumbers for leaky waves, and the 

requirement for computationally intensive algorithms. Much progress has been made in 

forward matrix modeling by Sezawa (1938), Pickett (1945), Haskell (1951), Jones 

(1962), Knopoff (1964), Vidale (1964), Dunkin (1965), Kausel (1981), Lowe (1995), 

Ryden and Park (2006), and Supranata (2006). The result of the forward matrix modeling 

is the theoretical dispersion curve (or dispersion image), which is the solution in terms of 

wavenumber (k) or phase velocity (Vph) of the Rayleigh dispersion equation, ∆(ω,k), for a 

given frequency (ω) in the linear eigenproblem: 

( , ) 0kω∆ =       (1.1) 

The solution of dispersion images in pavements requires a two-dimensional 

search over real and imaginary components of complex wavenumbers, due to the 

significant energy in leaky modes (e.g., Jones 1962, Vidale 1964). Lowe (1995) proposed 

a method for two-dimensional searching over the complex wavenumber domain. Ryden 

and Park (2006) combined the phase-velocity scanning technique, fast Fourier 

transforms, and Hankel transforms to obtain theoretical dispersion images without the 

need for computationally-intensive two-dimensional searches. Since soils do not exhibit 

the phenomena of leaky waves or nonlinear strains in surface-wave testing, the imaginary 

component of the wave number may be neglected without an appreciable loss of accuracy 

(Ryden 2004). Therefore, generating dispersion images for soils requires only a one-
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dimensional bisection searching technique (Nazarian 1984) or finding the minimum 

absolute value of a determinant (Supranata 2006). 

After generating theoretical dispersion curves, a search method is typically used 

in an inversion procedure to minimize the difference between theoretical and 

experimental dispersion curves. Traditionally, perhaps the most widely used inversion 

method has been the Levenberg-Marquardt (L-M) method (Levenberg 1944, Marquardt 

1963), which employs partial derivatives to determine the gradient towards a minimum 

error (e.g., Nazarian 1984, Xia 1999). Although the L-M method can provide a unique 

solution, it may converge to a local minimum and fail to find the global minimum error. 

To overcome this disadvantage, a variety of global search methods have been employed, 

including the genetic algorithm (GA) (Yamanaka and Ishida 1996, Iglesias et al. 2001, 

Pezeshk and Zarrabi 2005) and simulated annealing (SA) (Iglesias et al. 2001, Ryden and 

Park 2006). These global methods can ensure convergence to the true minimum within a 

specified domain, but at significant computational cost. 

1.3 Objectives and Significance of the Dissertation 

To advance the field of nondestructive surface wave testing of soils and 

pavements, this study focuses on developing improved NDT techniques with capacities 

for comprehensive modeling, multimode and high-resolution testing, and fast inversion. 

Comprehensive modeling is achieved by the combination of three matrix methods with 

the finite element method. In the dissertation, the three matrix methods will be described 

in detail and programmed in MATLAB as forward algorithms for further inversion 

analysis. The forward algorithms are able to deal with so-called “irregular” soil structures 

(defined as those having embedded high- or low-velocity layers), and pavement 
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structures requiring complex wavenumbers for leaky waves. The challenge of simulating 

half-space boundary conditions for surface wave analysis via FEM will be addressed by 

applying the absorbing layers using increasing damping (ALID) technique (Liu and Jerry 

2003, Drozdz 2008) in the finite element software Abaqus 6.10-1.  

Aimed at improving the resolution of experimental dispersion images by 

minimizing side lobes and increasing sharpness, a high-resolution phase-velocity and 

intercept-time scanning (PIS) scheme will also be presented. To provide cost savings and 

improve the efficiency of active surface wave 3-D stiffness profiling of soil and 

pavement sites, this study will make use of the multichannel simulation with one receiver 

(MSOR) method recently demonstrated by the research group to be equivalent to the 

MASW method for imaging dispersion curves for soils, and also shown to obey the 

reciprocity principle for surface Rayleigh waves. To improve the accuracy of measuring 

high-frequency and high-velocity dispersion data in pavement sites, this study will 

develop a multichannel surface wave acquisition system using MATLAB software and 

National Instruments hardware. To measure more complete multi-mode dispersion data 

of Rayleigh waves, using a relatively short receiver spread for minimizing lateral 

variation, a minimally-invasive multimodal surface wave (MMSW) method will be 

developed which uses either embedded receivers at various depths to record surface 

waves generated from moving impacts on the ground surface or a multichannel 

seismograph with an array of geophones on the soil surface for measuring surface wave 

motions caused by Standard Penetration Test hammer blows at various depths in a 

borehole. To estimate the ranges of optimum geophone depths for higher modes, stiffness 

matrix method and finite element-based simulations of the MMSW method will be 
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performed to identify the relationships between critical geophone depths and apparent 

cut-off frequencies. 

The final inversion step will then infer the stiffness profile of the soil or pavement 

medium by employing a fast hybrid genetic-simulated-annealing (GSA) algorithm to 

solve multiple minimization and non-linear optimization problems to match the 

theoretical dispersion images against their experimental counterparts. 

1.4 Dissertation Organization 

This dissertation will be divided into three parts. Part I will contain background 

information and discussion of the numerical modeling of Rayleigh waves in a half-space 

medium by three matrix methods and an ALID FE method. The numerical models can 

produce theoretical dispersion images for given material profiles, and provide insight into 

aspects of wave generation and propagation. Part II will describe (1) an improved 

experimental dispersion analysis PIS scheme, (2) an economical and high-resolution 

surface wave testing method using one receiver and a moving source previously 

developed by Ryden (2004) for testing asphalt pavement and adapted by this research 

group for use on soils, (3) a new custom-programmed data acquisition system for MASW 

and MSOR testing using MATLAB software and National Instruments hardware, (4) a 

new minimally-invasive multimodal surface wave (MMSW) method for measuring 

multi-mode Rayleigh waves using an embedded receiver and moving surface source or a 

borehole impact and multichannel surface receivers, and (5) a procedure to identify 

critical depths for higher modes. Part III will introduce a hybrid GSA optimization 

method for improved inversion of surface wave dispersion data. 
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 RAYLEIGH WAVE MODELING BY ANALYTICAL CHAPTER 2.

AND COMPUTATIONAL METHODS 

This chapter covers the formulation of Rayleigh-wave equations, forward matrix 

methods for modeling layered continua, techniques for calculating theoretical dispersion 

curves, and finite element simulation of Rayleigh wave propagation in a layered half-

space. 

2.1. Introduction 

Rayleigh waves are disturbances that travel and transfer energy through solid 

media having a free surface, and contain information about geometrical and mechanical 

properties of the media. The continuous nature of the media makes wave propagation 

possible and enables the use of nondestructive testing to determine its material properties. 

For homogeneous media, Rayleigh waves are non-dispersive, but in heterogeneous media 

such as layered soil structures, Rayleigh waves are dispersive, meaning that the phase 

velocity of wave propagation varies with frequency. The dispersion characteristics of 

Rayleigh wave motion contain information on the stiffness profile of the media (i.e., layer 

thicknesses and associated shear moduli or shear wave velocities). Many geophysical 

methods have therefore been developed in the past several decades which use Rayleigh 

wave motion to infer the stiffness profiles of geological deposits. 

2.2. Generation of Rayleigh Waves 

Stress waves in solid media include body waves and surface waves. Body waves 

can be separated into P waves (referred to as primary, compressional, or dilatational) and 

S waves (secondary, shear, distortional, transverse, or equivoluminal). The direction of 

particle motion for P waves is parallel to the direction of wave propagation, while particle 



www.manaraa.com

11 

motion for S waves is transverse to the propagation direction (Figure 2.1). S waves can 

therefore be decomposed into horizontally polarized (SH) and vertically polarized (SV) 

types, for which the transverse particle motion is in horizontal or vertical planes, 

respectively. Body waves are non-dispersive, meaning that their wave speed (also known 

as phase velocity) is independent of wavelength (or alternatively, frequency). When body 

waves impinge upon a free-surface or an interface between two materials, waves will be 

reflected and refracted and mode conversions may occur. Specifically, incident P waves 

will generate reflected and refracted P and SV waves, incident SV waves will generate 

reflected and refracted P and SV waves, and incident SH waves will generate only 

reflected and refracted SH waves. The reflection and refraction properties of body waves 

have been widely used in geophysical survey methods for many decades.  

Surface waves are generated by the interaction of body waves along the interface 

of two media, at least one of which must be a solid. A characteristic of surface waves is 

that their motion decays with depth, and their rate of decay with distance along the 

surface is slower than that of body waves. SH waves are transformed to Love waves 

when trapped in a layer overlying another layer or half-space of higher wave speed. 

Similar to the SH waves from which they are generated, Love wave particle motion is 

confined to horizontal planes. Rayleigh waves result from the interaction between P and 

SV waves at the traction-free surface of a solid, and the resulting elliptical particle 

motion is therefore confined to vertical planes (Figure 2.2). Near the surface, the particle 

motion forms a retrograde ellipse, meaning that particle motion is counterclockwise for a 

wave traveling from left to right. Below a depth of approximately 20% of the Rayleigh 

wavelength, the phase of the horizontal component reverses and the motion becomes 
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prograde. Rayleigh waves are non-dispersive for a homogeneous half-space, but 

dispersive for vertically heterogeneous half-spaces, such as the layered soil models 

commonly used in geophysics and studied herein. 

  

  
Figure 2.1 Horizontally propagating body waves (P and SV) and surface waves (Love 

and Rayleigh). (from Braile 2004) 

 
Figure 2.2 Interaction of P and SV waves to form Rayleigh waves at the traction-free 

surface of a solid. (after Viktorov 1967) 

When an SV wave is incident at a traction-free surface of a solid, only reflected P 

and SV waves are generated. When the incidence angle  

1sin S
c

P

V
V

β −  
=  

 
 (2.1) 

Dilatational           +          Vertical shear           =          Rayleigh mode 

http://web.ics.purdue.edu/%7Ebraile/edumod/waves/Pwave.htm
http://web.ics.purdue.edu/%7Ebraile/edumod/waves/Swave.htm
http://web.ics.purdue.edu/%7Ebraile/edumod/waves/Lwave.htm
http://web.ics.purdue.edu/%7Ebraile/edumod/waves/Rwave.htm
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exceeds the critical angle, no reflected P waves propagate back into the half-space and  

P-waves only graze along the surface, thus part of the wave energy is trapped along the 

free surface (Figure 2.3). This phenomenon is called post-critical reflection, and suggests 

the existence of surface waves with a portion of their energy confined near the free 

surface. 

a) 

 

b) 

 
Figure 2.3 Incident SV wave and reflected SV and P waves: a) Pre-critical reflection; 

b) Post-critical reflection. (after Van Der Hilst 2014) 

Lamb waves are guided waves in plates with traction-free surfaces, and have an 

infinite number of antisymmetric (A) and symmetric (S) modes. Rayleigh waves, on the 

other hand, can only exist in a half-space solid that has a traction-free surface. For finite 

plates, however, if the wavelength of a surface wave is much shorter than the thickness of 

the plate (e.g., less than half the plate thickness d), then the coupled motion of the 

fundamental antisymmetric (A0) and symmetric (S0) modes of Lamb waves can be 

thought of as quasi-Rayleigh waves (Viktorov 1967). Furthermore, at high frequencies, 

the phase velocities of the A0 and S0 Lamb waves in a plate asymptotically approach the 

phase velocity of Rayleigh waves of a homogeneous half-space having the same material 

properties as the plate (Figure 2.4). Additionally, the distribution of displacements with 

depth is similar for Lamb and Rayleigh waves (Figure 2.5). 
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Figure 2.4 Lamb wave dispersion curves for a plate. (from Ryden and Park 2004) 

 

0aW
∧

: vertical displacement of A0 mode;  

0sW
∧

: vertical displacement of S0 mode; 

0RW
∧

: vertical displacement of Rayleigh 
waves; 

0au
∧

: horizontal displacement of A0 mode; 

0su
∧

: horizontal displacement of S0 mode; 

Ru
∧

: vertical displacement of Rayleigh 
waves; 
d: thickness of the plate; 

Rλ : wavelength of Rayleigh waves. 

Figure 2.5 Amplitudes of A0 and S0 Lamb waves for a plate of thickness d, and 
Rayleigh waves for a homogeneous half-space. (from Viktorov 1967) 

Having approximately equal amplitudes and phases, the A0 and S0 modes of 

Lamb waves in a plate interfere with each other. At the upper surface, the displacement 

of the A0 and S0 modes are in the same direction and interfere constructively, while at the 



www.manaraa.com

15 

lower surface the displacements are in opposite directions and interfere destructively 

(Figure 2.6a). Thus their total acoustic field is similar to the Rayleigh wave acoustic field 

(Figure 2.6b), and the combined A0 and S0 displacements along depth are very similar to 

those of Rayleigh waves for both vertical and horizontal components (Figure 2.7). 

a)  

b)  

Figure 2.6 a) Symmetric (S0) and antisymmetric (A0) fundamental Lamb-wave 
deformation modes of a plate (from Viktorov 1967); b) Superpostion of the  A0 and S0 

modes to form quasi-Rayleigh waves. 

S0 A0 Bottom

Top
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0aW
∧

: vertical displacement of 
A0 mode;  

0sW
∧

: vertical displacement of 
S0 mode; 

0RW
∧

: vertical displacement of 
Rayleigh waves; 

0aU
∧

: horizontal displacement 
of A0 mode; 

0sU
∧

: horizontal displacement 
of S0 mode; 

RU
∧

: vertical displacement of 
Rayleigh waves; 
d: thickness of the plate; 

Rλ : wavelength of Rayleigh 
waves. 

Figure 2.7 Horizontal and vertical displacement amplitudes for quasi-Rayleigh waves in 
a free plate of thickness d, and Rayleigh waves in a homogeneous half-space. (from 

Viktorov, 1967) 

Generalized Rayleigh waves include Stoneley, Scholte, and tube waves. Stoneley 

waves exist at solid-solid interfaces only under very restricted conditions (Sheriff and 

Geldart 1982). Scholte waves exist at fluid-solid interfaces (Sheriff and Geldart 1982). 

Tube waves are a type of Stoneley acoustic wave at fluid-solid interfaces such as walls of 

fluid-filled boreholes, derived from the interaction of compressional waves in the liquid 

and shear waves in the solid. In this thesis, only Rayleigh and Lamb waves will be 

studied in detail, and the generalized surface waves will not be examined.  

2.3. Basic Assumptions for Analysis of Rayleigh Waves 

Basic assumptions are needed to enable Rayleigh-wave modeling in complex 

solid media and to capture their dispersion characteristics. The media are first assumed to 

be horizontally layered structures (Nazarian 1984, Stokoe et al. 1994, Park et al. 1999a). 

http://www.fesaus.org/glossary/doku.php?id=terms:compression_wave
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Although the actual media might have significant horizontal variation (e.g., dipping 

interfaces, faults, folds), the horizontally-layered assumption is generally considered 

valid owing to another assumption that the inverted stiffness profile represents the middle 

point of the testing spread (e.g., Luo et al. 2009). Each layer of the media is treated as a 

homogeneous, isotropic, elastic solid, because the strains in soil, rock, and pavement are 

typically very small in geophysical testing (Figure 2.8), and the microstructure size of 

particles is relatively small compared to the wavelength of propagating waves and size of 

macrostructure of the media. 

a)  

Figure 2.8 Range and applicability of dynamic field and laboratory tests of soils: a) 
from Obrzud (2010). (continued on next page) 
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b)  
Figure 2.8 (continued) b) after Das (2011). 

Since the deformations are very small in geophysical field testing (<10-5%), the 

modulus remains within the maximum range (Figure 2.9a) and the damping within the 

minimum range (Figure 2.9b). 

Rayleigh waves generated by a point impact will propagate with cylindrical 

wavefronts, but can be treated as plane waves when measured beyond a certain distance 

along a straight line starting at the impact point (Park et al. 1999a). Figure 2.10 illustrates 

the relative amplitudes and velocities of P, SV, and Rayleigh wavefronts emanating from 

a circular footing vibrating vertically on the surface of a homogeneous half-space. 

Approximately 67% of the energy along the surface is carried by Rayleigh waves, 

making them relatively easy to generate and effective for seismic profiling.  
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a)  

b)  

Figure 2.9 Representative dynamic properties for clay, sand, and rock: (a) Secant shear 
modulus versus shear strain amplitude; (b) damping ratio versus shear strain amplitude. 

(after Bardet et al. 2000) 

 
Figure 2.10 P, SV, and Rayleigh wavefronts emanating from a vertically vibrating 
circular footing on a homogeneous, isotropic, elastic half-space. (from Richart et al. 

1970) 

 

0

0.2

0.4

0.6

0.8

1

0.0001 0.01 1

G
/G

m
ax

 

Shear Strain (%) 

Clay
Sand
Rock

  

0

10

20

30

0.0001 0.01 1

D
am

pi
ng

 R
at

io
 (%

) 

Shear Strain (%) 

Clay
Sand
Rock

  



www.manaraa.com

20 

2.4. Rayleigh Wave Solutions for a Homogeneous, Isotropic, Elastic Half-space 

2.4.1. Equations of motion 

Figure 2.11 shows the normal and shear stresses acting on a differential element, 

with the stresses acting in the x-direction labeled. The element has dimensions dx, dy and 

dz, and tensile normal stresses are taken to be positive. 

 
Figure 2.11 Normal and Shear tresses in x-direction on an infinitesimal element of a 

homogeneous elastic medium. 

In the x direction, the dynamic equilibrium equation is 

2

2

xyxx
xx xx xy xy

xz
xz xz

dx dy dz dy dz dy dx dz dx dz
x y

udz dx dy dx dy dx dy dz
z t

τσσ σ τ τ

ττ τ ρ

∂ ∂ + − + + −   ∂ ∂   
∂ ∂ + + − = ∂ ∂ 

 (2.2) 

xz τ 

xy τ x σ 

 x (u) 

  y (v) 

  z (w) 

dy 

dx 

dz 

xz τ 

xy τ xx σ 
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where σxx is normal stress in the x direction, τxy is shear stress in the x direction acting on 

the x-y plane, τxz is shear stress in the x direction acting on the x-z plane, u is 

displacement in the x direction, ρ is mass density of the differential element, and t is time. 

The above equation can be simplified to 

2

2
xyxx xzu

t x y z
τσ τρ

∂∂ ∂ ∂
= + +

∂ ∂ ∂ ∂  
(2.3) 

The same operations in the y and z directions give 

2

2
yx yy yzv

t x y z
τ σ τ

ρ
∂ ∂ ∂∂

= + +
∂ ∂ ∂ ∂  

(2.4) 

2

2
zyzx zzw

t x y z
ττ σρ

∂∂ ∂ ∂
= + +

∂ ∂ ∂ ∂  
(2.5) 

where v and w are displacements in the x and z directions, respectively. Eqs. (2.3)–(2.5) 

represent three-dimensional equations of motion of an elastic solid element.  

For a linear, isotropic, elastic medium, the equations of motion can be written in 

terms of strains and displacements using the constitutive (stress-strain) and kinematic 

(strain-displacement) relationships. The stress-strain relationships (generalized 3D 

Hooke’s law) can be expressed as 

2

2

2

2(1 ) (1 ) (1 2 )

xx xx xy yx xy

yy yy yz zy yz

zz zz zx xz zx

E E

σ λε µ ε τ τ µ γ

σ λε µ ε τ τ µ γ

σ λε µ ε τ τ µ γ
υµ λ

υ υ υ

= + = =

= + = =

= + = =

= =
+ + −  

(2.6) 

where, ( )x y zε ε ε ε= + +  is volumetric strain, λ  and µ are Lamé’s constants, E is 

Young’s modulus, µ is shear modulus, and υ is Poisson’s ratio. 

The strain-displacement relationships are 
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1 12
2 2

1 12
2 2

1 12
2 2

xx xy xy xy x

yy yz yz yz y

zz zx zx zx z

u v u w v
x x y y z

v w v u w
y y z z x

w u w v u
z z x x y

ε ε γ ε

ε ε γ ε

ε ε γ ε

   ∂ ∂ ∂ ∂ ∂
= = + = Ω = −   ∂ ∂ ∂ ∂ ∂   

 ∂ ∂ ∂ ∂ ∂ = = + = Ω = −  ∂ ∂ ∂ ∂ ∂  
 ∂ ∂ ∂ ∂ ∂ = = + = Ω = −   ∂ ∂ ∂ ∂ ∂     

(2.7) 

where γij are the engineering shear strains and Ωij are the rotations. Substituting Eqs. (2.6) 

and (2.7) into Eqs. (2.3)−(2.5) and simplifying gives Navier’s equations; 

2
2

2 ( )u u
t x

ερ λ µ µ∂ ∂
= + + ∇

∂ ∂  
(2.8) 

2
2

2 ( )v v
t y

ερ λ µ µ∂ ∂
= + + ∇

∂ ∂  
(2.9) 

2
2

2 ( )w w
t z

ερ λ µ µ∂ ∂
= + + ∇

∂ ∂  
(2.10) 

where 2∇  is the Laplacian operator defined as 
2 2 2

2
2 2 2x y z

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
. 

2.4.2. Solution of Navier’s equations of motion for Rayleigh waves  

Navier’s equations can be solved using the Helmholtz decomposition:  

= ∇Φ − ∇ ×u ψ  (2.11) 

where Φ represents the scalar potential of compressional (P wave) motion, ψ represents 

the vector potential of shear (S wave) motion, and u is the displacement vector, such that 

{ }Tu v w=u  
T

x y z
 ∂Φ ∂Φ ∂Φ

∇Φ =  ∂ ∂ ∂   

T
y yx xz z

x y z

i j k

x y z y z z x x y
ψ ψψ ψψ ψ

ψ ψ ψ

∂ ∂ ∂ ∂∂ ∂∂ ∂ ∂
∇× = = − − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

ψ
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Eq. (2.11) demonstrates that the Rayleigh wave is from the superposition of P and SV 

waves. Expansion of Eq. (2.11) gives 

yzu
x y z

ψψ ∂∂Φ ∂
= − +

∂ ∂ ∂  
(2.12) 

x zv
y z x

ψ ψ∂Φ ∂ ∂
= − +

∂ ∂ ∂  
(2.13) 

y xw
z x y

ψ ψ∂∂Φ ∂
= − +

∂ ∂ ∂  
(2.14) 

Considering a Rayleigh wave as a plane wave (Figure 2.12) that travels in the x 

direction and has zero displacement in the y direction (v=0, 0z yψ∂ ∂ = , 0x yψ∂ ∂ = ), 

the above equations can be simplified to 

u
x z

∂Φ ∂Ψ
= +

∂ ∂  
(2.15) 

w
z x

∂Φ ∂Ψ
= −

∂ ∂  
(2.16) 

where Ψ  represents yψ . 

 
Figure 2.12 Plane Rayleigh wave in homogeneous elastic half-space. (from Supranata 

2006) 

For the plane wave, the volumetric strain (dilation) thus reduces to 
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xx zz
u w
x z

ε ε ε ∂ ∂
= + = +

∂ ∂  
(2.17) 

The only nonzero rotation is 

2 y
u w
z x

∂ ∂
Ω = −

∂ ∂  
(2.18) 

Substituting Eqs. (2.15) and (2.16) into Eqs. (2.17) and (2.18) gives 

2 2
2

2 2xx zz x z
ε ε ε ∂ Φ ∂ Φ

= + = + = ∇ Φ
∂ ∂  

(2.19) 

2 2
2

2 22 y x z
∂ Ψ ∂ Ψ

Ω = + = ∇ Ψ
∂ ∂  

(2.20) 

The above two equations illustrate that Φ  and Ψ are related to dilation and rotation 

(shear deformation), respectively. For the plane wave, Navier’s equations simplify to 

Eqs. (2.8) and (2.10). Substituting Eqs. (2.15)−(2.17) into Eqs. (2.8) and (2.10) gives 

2 2
2

2

( )( ) ( ) ( )
t x z x x z

ρ λ µ µ∂ ∂Φ ∂Ψ ∂ ∇ Φ ∂Φ ∂Ψ
+ = + + ∇ +

∂ ∂ ∂ ∂ ∂ ∂  
(2.21) 

2 2
2

2

( )( ) ( ) ( )
t z x z z x

ρ λ µ µ∂ ∂Φ ∂Ψ ∂ ∇ Φ ∂Φ ∂Ψ
− = + + ∇ −

∂ ∂ ∂ ∂ ∂ ∂  
(2.22) 

which can be rearranged to 

2 2 2 2

2 2

( ) ( )( ) ( ) ( 2 )
x t z t x z

ρ ρ λ µ µ∂ ∂ Φ ∂ ∂ Ψ ∂ ∇ Φ ∂ ∇ Ψ
+ = + +

∂ ∂ ∂ ∂ ∂ ∂  
(2.23) 

2 2 2 2

2 2

( ) ( )( ) ( ) ( 2 )
z t x t z x

ρ ρ λ µ µ∂ ∂ Φ ∂ ∂ Ψ ∂ ∇ Φ ∂ ∇ Ψ
− = + −

∂ ∂ ∂ ∂ ∂ ∂  
(2.24) 

Subtracting the partial derivative of Eq. (2.24) with respect to x from the partial 

derivative of Eq. (2.23) with respect to z gives 

2 2 2 2 2 2

2 2 2 2 2 2

( ) ( )( ) ( )
x t z t z x

ρ ρ µ µ∂ ∂ Ψ ∂ ∂ Ψ ∂ ∇ Ψ ∂ ∇ Ψ
+ = +

∂ ∂ ∂ ∂ ∂ ∂  
(2.25) 

which can be rearranged to 

2 2 2
2 2

2 2 2 2( ) ( )
x t z t

ρ µ µ ρ∂ ∂ Ψ ∂ ∂ Ψ
− ∇ Ψ = ∇ Ψ −

∂ ∂ ∂ ∂  
(2.26) 
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The above equation is satisfied if the vector potential satisfies the wave equation 

2
2

2 2

1

SV t
∂ Ψ

∇ Ψ =
∂  

(2.27) 

where SV µ ρ=  is the shear wave velocity. The sum of the partial derivative of Eq. 

(2.23) with respect to x and the partial derivative of Eq. (2.24) with respect to z gives 

2 2 2 2 2 2

2 2 2 2 2 2

( ) ( )( ) ( ) ( 2 ) ( 2 )
x t z t x z

ρ ρ λ µ λ µ∂ ∂ Φ ∂ ∂ Φ ∂ ∇ Φ ∂ ∇ Φ
+ = + + +

∂ ∂ ∂ ∂ ∂ ∂  
(2.28) 

which can be rearranged as 

2 2 2
2 2

2 2 2 2( ( 2 ) ) (( 2 ) )
x t z t

ρ λ µ λ µ ρ∂ ∂ Φ ∂ ∂ Φ
− + ∇ Φ = + ∇ Φ −

∂ ∂ ∂ ∂  
(2.29) 

The above equation is satisfied if the scalar potential satisfies the wave equation 

2
2

2 2

1

PV t
∂ Φ

∇ Φ =
∂  

(2.30) 

where ( 2 )PV λ µ ρ= +  is the dilatational wave velocity. If the plane Rayleigh wave is 

harmonic with circular frequency ω and wavenumber kR, the wave velocity is 

/R RV kω=  (2.31) 

The displacement potentials which are the solutions to Eqs. (2.27) and (2.30) can thus be 

assumed to have the form of harmonic plane waves propagating in the +x direction;  

( )( ) Ri t k xf z e ω −Φ =  (2.32) 
( )( ) Ri t k xg z e ω −Ψ =  (2.33) 

where f(z) and g(z) describe the variation of dilatational and rotational components of 

Rayleigh waves with depth. Substituting the above two equations into the wave Eqs. 

(2.27) and (2.30) gives 

2 2
2

2 2

( )( ) ( )R
P

d f zf z k f z
V dz
ω

− = − +
 

(2.34) 
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2 2
2

2 2

( )( ) ( )R
S

d g zg z k g z
V dz
ω

− = − +
 

(2.35) 

which can be rearranged to 

2 2
2

2 2

( ) ( ) 0R
P

d f z k f z
dz V

ω 
− − = 

   
(2.36) 

2 2
2

2 2

( ) ( ) 0R
S

d g z k g z
dz V

ω 
− − = 

   
(2.37) 

In order for the solutions to be non-harmonic with depth, we must have 

2
2

2 0R
P

k
V
ω

− >
 

(2.38) 

2
2

2 0R
S

k
V
ω

− >
 

(2.39) 

Thus, 

R S PV V V< <  

and the Rayleigh wave travels slower than the shear and dilatational waves. The general 

solutions to f(z) and g(z) can be written in the form 

( ) q z q zf z Ae Be−= +  (2.40) 

( ) s z s zg z Ce De−= +  (2.41) 

where  

2 2 2 2
R Pq k Vω= −  (2.42) 

2 2 2 2
R Ss k Vω= −  (2.43) 

Then the potentials Φ  and Ψ  can be written as 

( )( ) Ri t k xq z q zAe Be e ω −−Φ = +  (2.44) 
( )( ) Ri t k xs z s zCe De e ω −−Ψ = +  (2.45) 

in which A and C are coefficients of horizontally propagating plane waves with 

amplitudes that decay exponentially with depth, while B and D are similar coefficients for 
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waves with amplitudes that grow exponentially with depth. For a semi-infinite half-space, 

displacement must be bounded as z → ∞ . Therefore, B and D must be zero, and the 

potential functions can be simplified to 

( )Ri t k xqzAe e ω −−Φ =  (2.46) 
( )Ri t k xszCe e ω −−Ψ =  (2.47) 

The surface is traction-free, and therefore 

2 2 0zz zz
w
z

σ λε µ ε λε µ ∂
= + = + =

∂  
(2.48) 

0xz zx
u w
z x

τ µ γ µ ∂ ∂ = = + = ∂ ∂   
(2.49) 

Substituting Eqs. (2.15)–(2.17) and (2.19) into the above equations gives 

2 2
2

22 0zz z x z
σ λ µ

 ∂ Φ ∂ Ψ
= ∇ Φ + − = ∂ ∂ ∂   

(2.50) 

0xz z x z x z x
τ µ ∂ ∂Φ ∂Ψ ∂ ∂Φ ∂Ψ    = + + − =    ∂ ∂ ∂ ∂ ∂ ∂      

(2.51) 

Substituting the Rayleigh wave potential functions Eqs. (2.46) and (2.47) into the above 

two equations gives 

( )2 2 2( ) 2 0zz R Rk q q ik sσ λ µ= − + Φ + Φ − Ψ =  (2.52) 

( )
2 2 2

2 2
2 22 2 ( ) 0xz R Rik q s k

x z z x
τ µ µ

 ∂ Φ ∂ Ψ ∂ Ψ
= + − = Φ + + Ψ = ∂ ∂ ∂ ∂   

(2.53) 

When z is zero, the potential functions become ( )Ri t k xAe ω −Φ =  and ( )Ri t k xCe ω −Ψ = , which 

can be  substituted into the above equations to give 

2 2[( 2 ) ] (2 ) 0zz R RA q k C i k sσ λ µ λ µ= + − − =  (2.54) 
2 2(2 ) ( ) 0xz R RA ik q C s kτ = + + =  (2.55) 

which can be combined to give 

2 2 2 2 2( )[( 2 ) ] 4R R Rs k q k k sqλ µ λ µ+ + − =  (2.56) 
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Substituting q and s into the above equation gives 

2 2 2 2
2 2 2 2 2 2

2 2 2 2(2 )[( 2 ) ] 4R R R R R R
S P S P

k k k k k k
V V V V
ω ω ω ωλ µ λ µ

 
− + × − − = − × − 

   
(2.57) 

which can be rearranged as 

2 2 2 2
2 2 2 2

2 2 2 2 2

1 (2 )[2 ( 2 ) ] 4R R R R
R S P S P

k k k k
k V V V V

ω ω ω ωµ λ µ
µ

− − + = − × −
 

(2.58) 

Squaring both sides of the above equation and simplifying gives 

2 22 2 2 2

2 2 2 2 2 2 2 2

22 2 16 1 1
S R P R S R P RV k V k V k V k
ω λ µ ω ω ω

µ
      +

− − = − −      
        

(2.59) 

Defining the ratio of the Rayleigh wave velocity to the shear wave velocity as 

R
RS

S S R

VK
V V k

ω
= =

 
(2.60) 

and the ratio of the Rayleigh wave velocity to the P wave velocity as 

1 2
2 2

R
RS

P P R S R

V K
V V k V k

ω υ ω α
υ

−
= = =

−  
(2.61) 

where 

1 2
2 2 2

S

P

V
V

µ υα
λ µ υ

−
= = =

+ −  
(2.62) 

Note that for all real media, Poisson’s ratio will be in the range 0 0.5υ≤ ≤ , and 

α  will therefore be between ( 0.5) 0α υ = =  and ( 0) 1/ 2α υ = = . After substituting 

Eqs. (2.60) and (2.62) into Eq. (2.59), the latter can be rewritten as 

( ) ( )( )
2

22 2 2 2 2 2
2

12 2 16 1 1RS RS RS RSK K K Kα α
α

 − − = − − 
   

(2.63) 

which can be rearranged with 2
RSx K= to give the characteristic Rayleigh wave equation: 

3 2 2 28 (24 16 ) 16( 1) 0x x xα α− + − + − =  (2.64) 
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While multiple real or complex-valued roots can exist for this equation, it can be shown 

for all real media for which 0 0.5υ≤ ≤  that Eq. (2.64) has only one real root (Viktorov 

1967). If VR=0 (i.e., x=0), the left hand side of this equation becomes 216( 1)α −  which 

will always be less than zero, and this condition is therefore not possible. Similarly, if 

VR=VS (i.e., x=1), the left hand side becomes 1, and this condition is also not possible. 

Therefore, Eq. (2.64) has only one real root in the range 

0 1x< <  or 0 1R SV V< <
 

which is shown in Figure 2.13. For given values of Poisson’s ratio, Eq. (2.64) can be used 

to find real-valued roots to obtain the Rayleigh wave velocity. Also, the equation is 

independent of frequency, meaning that R-waves in a homogeneous half-space are non-

dispersive. The variation of velocity ratio with Poisson’s ratio is shown in Figure 2.14, 

from which it can be seen that /R SV V  ranges between 0.87 and 0.96 as reported by 

Knopoff (1952). An approximate expression for this ratio is provided by Viktorov 

(1967); 

0.87 1.12
1

R

s

V
V

υ
υ

+
=

+  
(2.65) 

  
Figure 2.13 Value of the left-hand side of 

Eq. (2.64) showing one real root. 
Figure 2.14 Variation of velocity ratio with 
Poisson’s ratio. (after Richart et al. 1970) 
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Substituting the potential functions, Eqs. (2.46) and (2.47), into the displacement 

functions, Eqs. (2.15) and (2.16), gives 

( ) ( )R Ri t k x i t k xqz sz
Ru Aik e e Cse eω ω− −− −= − −  (2.66) 

( ) ( )R Ri t k x i t k xqz sz
Rw qAe e Cik e eω ω− −− −= − +  (2.67) 

Applying the boundary condition of zero shear stress on the free surface from Eq. (2.55) 

gives 

2 2

2 R

R

k qiC A
s k

= −
+  

(2.68) 

Substituting C into u and w in the above two equations gives 

( )
2 2

2
Ri t k xqz szR

R
R

k qsu A k e e ie
s k

ω −− − 
= − + +   

(2.69) 

2
( )

2 2

2
Ri t k xqz szR

R

k qw A qe e e
s k

ω −− − 
= − + +   

(2.70) 

These displacements are shown in Figure 2.15 normalized by their values at z=0. The 

ratio of vertical to horizontal displacement can be written as 

2

2 2

2 2

2

2

qz szR

R

qz szR
R

R

k qqe e
w s k ik qsu k e e

s k

− −

− −

− +
+=

− +
+  

(2.71) 

The imaginary unit i in Eqs. (2.69) and (2.71) indicates that the horizontal and vertical 

displacements are out of phase by 90o. The variation of w(z=0)/u(z=0) with Poisson’s 

ratio is shown in Figure 2.16, from which it can be seen that the vertical component is 

always larger than the horizontal one at the free surface. Figure 2.17 shows an example of 

the vertical displacement w(x,t) at z=0 in the space and time domains, which is periodic 

in time with period 1 /T f=  and periodic in space with wavelength 2 / Rkλ π= . 
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Figure 2.15 Normalized amplitudes of 
Rayleigh wave displacement components 

with depth (after Richart et al., 1970). 

Figure 2.16 Ratio of vertical to 
horizontal Rayleigh wave displacement 
at free surface versus Poisson’s ratio. 

a)  

 

b) 

 
Figure 2.17 Vertical displacement w(x,t)/A at z=0 in space and time domains for plane 
Rayleigh wave having frequency 3 Hz and wavelength 31.4 m calculated by Eq. (2.70): 

a) real part; b) imaginary part. 

Figure 2.18 shows theoretical and experimentally measured Rayleigh wave 

particle motions. For a homogeneous, isotropic half-space, the particle motion decays 

exponentially with depth, and is elliptical and retrograde near the surface, changing to 

prograde below a depth of approximately 20% of the Rayleigh wavelength. Although the 

retrograde/prograde rotation direction behavior is often cited, Haskell (1953) 

demonstrated that the behavior does not hold true at all frequencies for vertically 

Ver

 

Horiz
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heterogeneous layered soils, and damping and nonlinearity in real soils also causes the 

ellipse axes to be inclined, both of which are evident in Figure 2.18b. 

a)  

b)  

Figure 2.18 Particle motion: a) theoretical; b) experimentally measured in soil (from Igel, 
2012). 

2.5. Computational Modeling of Rayleigh Wave Motion and Dispersion Behavior 

in Layered Media 

As discussed above, Rayleigh waves are dispersive in layered media. For 

analytical and computational modeling, each layer in the assumed soil medium model has 

horizontal interfaces and is homogeneous, isotropic, and elastic. Considering a Rayleigh 
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wave as a plane wave propagating in a 2-D medium, the model can be described in a 2-D 

coordinate system as shown in Figure 2.19. The x-axis is directed along the ground 

surface and is the wave propagation direction, while the z-axis is taken as positive 

downward into the medium. 

For such vertically inhomogeneous layered soil profiles, the phase velocity for 

harmonic Rayleigh or Love waves is a function of wave frequency (or alternatively, wave 

length or wave period), and therefore the surface waves are dispersive. The dependence 

of surface wave phase velocity on frequency (or wave length) is referred to as the 

dispersion relationship, which can be represented by dispersion curves or by images of 

dispersion curves, as will be explained in subsequent chapters. The dispersion curves 

depend on the material properties (Poisson’s ratio, shear modulus, density) and geometry 

(e.g., layer thicknesses, dipping, faulting) of the layered media. Thus, the dispersion 

curves of a given layered medium can be considered a unique representation of the 

physical properties of the medium, and are most sensitive to the shear modulus and layer 

thickness profiles. Due to the complexity of the equations involved, dispersion curves for 

layered media are usually calculated using numerical methods. Propagation of Rayleigh 

waves in layered media and the derivation of the dispersion functions are detailed in the 

following sections using the transfer matrix, global matrix, and stiffness matrix methods. 
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Figure 2.19 Notation for layered soil structure with horizontal interfaces. 

2.5.1. Transfer matrix method 

The transfer matrix method for solution of the dispersion problem of layered 

media was first introduced by Thomson (1950), and later modified and corrected by 

Haskell (1953). A number of further works to treat numerical difficulties in the transfer 

matrix method are detailed in Nazarian (1984). A brief overview of the method and a 

potential degeneration of the solution for application to the case of wave propagation in 

layered plates is presented herein. 

In Section 2.4, the propagation of Rayleigh waves was demonstrated as the 

combination of two potential functions Φ  and Ψ  representing dilatational and shear 

waves, respectively. In general, layered media can posess not only downward 

propagating waves from surface sources (such as a hammer impact on the free surface), 

but also upward propagating waves from seismic sources or from refraction and 

reflection of upward and downward waves from the layer interfaces. Therefore, in a 

x 
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general formulation including body waves, each potential function can have two parts 

describing both downward and upward propagating waves, which can be represented by 

complex exponentials in z of the form ( )i t kze ω ± . In the Rayleigh-wave formulation of the 

previous sections, however, such terms were replaced by real-valued exponential 

functions describing standing waveforms with exponential growth or decay in the z-

direction. 

Considering an ideal elastic medium with N-1 layers overlying a half-space, with 

z=0 at the free surface, the potential functions for the nth layer can be written as 

1 1( ) ( ) ( )( )n n n n Rq z Z q z Z i t k x
n n nA e B e e ω− −− − − −Φ = +  (2.72) 

1 1( ) ( ) ( )( )n n n n Rs z Z s z Z i t k x
n n nC e D e e ω− −− − − −Ψ = +  (2.73) 

where Zn-1 is the depth of the (n-1)th layer interface at the top of layer n , and Zn-1 ≤ z ≤ Zn 

is the depth from the ground surface. An and Cn are coefficients of downward decaying 

waves, and Bn and Dn are coefficients of upward decaying waves. The potential functions 

can therefore be decomposed into upward and downward decaying components as  

U D
n n nΦ = Φ + Φ  (2.74) 

U D
n n nΨ = Ψ + Ψ  (2.75) 

1( ) ( )n n Rq z Z i t k xU
n nB e e ω−− −Φ =  (2.76) 

1( ) ( )n n Rq z Z i t k xD
n nA e e ω−− − −Φ =  (2.77) 

1( ) ( )n n Rs z Z i t k xU
n nD e e ω−− −Ψ =  (2.78) 

1( ) ( )n n Rs z Z i t k xD
n nC e e ω−− − −Ψ =  (2.79) 

where qn, sn and (z-Zn-1) are positive. Substituting the above four potential equations into 

displacement and stress functions (Eqs. (2.6), (2.15) and (2.16)) and using Eq. (2.19) 

gives 
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[ ][ ]
U U D D Tn n

n R n R n n n n nu ik s ik s
x z

∂Φ ∂Ψ
= + = −     −   − Φ   Ψ   Φ   Ψ

∂ ∂  
(2.80) 

[ ][ ]
U U D D Tn n

n n R n R n n n nw q ik q ik
z x

∂Φ ∂Ψ
= − =     −   Φ   Ψ   Φ   Ψ

∂ ∂  
(2.81) 

, 2 [ ][ ]
U U D D T

zz n zz n R n n R n n n n na i k s a i k sσ λε µε µ µ µ µ= + =   2     − 2 Φ   Ψ   Φ   Ψ  (2.82) 

, [ ][ ]
U U D D T

xz n xz R n n R n n n n n ni k q a i k q aτ µγ µ µ µ µ= = −2     2   Φ   Ψ   Φ   Ψ  (2.83) 

where T denotes the transpose, and  

( )( )22 22 n
n R Sa k Vω= −

 
(2.84) 

Defining the following two vectors and transformation matrix for the nth layer: 

, ,( ) [ ( ) ( ) ( ) ( )]T
n n n zz n xz nS z u z w z z zσ τ=        (2.85) 

( ) [ ( ) ( ) ( ) ( )]
U U D D T

n n n n nP z z z z z= Φ   Ψ   Φ   Ψ  (2.86) 

R n R n

n R n R
n

n R n n R n

R n n R n n

ik s ik s
q ik q ik

T
a i k s a i k s

i k q a i k q a
µ µ µ µ
µ µ µ µ

− − − 
 − =

2 −2 
 −2 2   

(2.87) 

The displacement and stress functions in Eqs. (2.80)−(2.83) at any point z within the 

layer can be rewritten as 

( ) ( )n n nS z T P z=  (2.88) 

by which the potential function vector can be determined from the stresses and 

displacements as 

1( ) ( )n n nP z T S z−=  (2.89) 

The relationship between two potential function vectors at top and bottom interfaces of 

the nth layer can be written as 

1

1 1

( ) ( )

( ) ( )

1

( )

( )

U
n n n R

n n n n n R

U
n n

q Z Z i t k x
n n n

q d q Z Z i t k x
n

q d
n n

Z B e e

e B e e

e Z

ω

ω

−

− −

− −

− −

−

Φ  =

             =

             = Φ   

(2.90) 
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where 1n n nd Z Z −= −  is the thickness of the nth layer. A similar procedure results in the 

following three equations: 

1( ) ( )
D

n nq dD
n n n nZ e Z−

−Φ  = Φ   (2.91) 

1( ) ( )
U U

n ns d
n n n nZ e Z −Ψ = Ψ   (2.92) 

1( ) ( )
U

n ns dD
n n n nZ e Z−

−Ψ = Ψ   (2.93) 

Upon defining the matrix 

0 0 0
0 0 0
0 0 0
0 0 0

n n

n n

n n

n n

q d

s d

n q d

s d

e
e

E
e

e

−

−

 
 
 =
 
 
   

(2.94) 

the above four relations between potential functions at the top and bottom of layer n can 

be expressed as 

1( ) ( )n n n n nP Z E P Z −=  (2.95) 

Enforcing equality of the stresses and displacements at the interface of layers n and (n+1) 

gives 

1( ) ( )n n n nS Z S Z+ = (continuity boundary condition) 

     ( )n n nT P Z=  (Eq. (2.88) is used.) 

          1( )n n n nT E P Z −=  (Eq. (2.95) is used.) 

               1
1( )n n n n nT E T S Z−

−=  (Eq. (2.89) is used.) 

(2.96) 

Defining 

1
n n n nG T E T −=  (2.97) 

Eq. (2.96) can be written as 

1 1( ) ( ) ( )n n n n n n nS Z S Z G S Z+ −= =  (2.98) 

which gives the displacements and stresses at the bottom of layer n given the properties 

of the layer and displacements/stresses at its top. Equation (2.98) can be applied 
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recursively to establish the relationship between displacements and stresses at the free 

surface and those at the interface at depth Zn-1: 

1

1 1 0
-1

( ) ( )n n i
i n

S Z G S Z−
=

= ∏  (2.99) 

2.5.1.1. Case 1: Layered soil system with traction-free top surface overlying a 

half-space 

Equation (2.99) can be substituted into Eq. (2.89) to relate the potentials at the top 

of any layer n to the displacements and stresses at the free surface: 

1
1 1 1

1 1 1 0 1 0
1

( ) ( ) ( ) ( )n n n n n n i n n
i n

P Z T S Z T G S Z T R S Z− − −
− −

= −

= = =∏  (2.100) 

where  

1

1
n i

i n

R G
= −

= ∏  (2.101) 

With the surface of the top layer being traction-free, S1(Z0) becomes 

[ ]T
1 0 1 1( ) (0) (0)S Z u w=     0  0  (2.102) 

If the load is applied only at the free surface of the top layer, then the potentials in the 

half-space must be bounded as z→∞. Thus, the potential vector for the half-space is 

1 1 1 1 1

1 1

( ) [ ( ) ( ) ( ) ( )]

[0 0 ( ) ( )]

U U D D T
N N N N N N N N N N

D D T
N N N N

P Z Z Z Z Z
Z Z

− − − − −

− −

= Φ   Ψ   Φ   Ψ

=     Φ   Ψ
 (2.103) 

Using the two boundary conditions in Eqs. (2.102) and (2.103), Eq. (2.100) can be 

written in matrix form as 

11 12 13 14 1

21 22 23 24 1

1 31 32 33 34

1 41 42 43 44

0 (0)
0 (0)

( ) 0
( ) 0

D
N N
D
N N

r r r r u
r r r r w

Z r r r r
Z r r r r

−

−

     
     
     =
Φ        

     Ψ     

  (2.104) 
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The above matrix can be partitioned into sub-matrices as indicated by the dashed lines, 

giving 

11 12

21 22

R R B
R RA

    
=     

    

0
0  

(2.105) 

which gives the equations 

11

21

R B
A R B

⋅ =
= ⋅

0

 
(2.106) 

From the first of the above equations, 

11 12 1

21 22 1

(0) 0
(0) 0

r r u
r r w

     
⋅ =     

      
(2.107) 

The displacements at the free surface depend on the imparted energy, and therefore can 

be non-zero in general. Thus, for a nontrivial solution, the determinant of R11 must be 

zero. The determinant 11 0R =  is a function of k and ω, and is called the characteristic 

(dispersion) function; 

11 12
11

21 22

( , ) 0
r r

k R
r r

ω∆ = = =
 

(2.108) 

Solving for the roots of the dispersion function at a given frequency yields the 

wavenumber and thus phase velocity of the Rayleigh wave at that frequency for the 

layered soil system. Solving for phase velocity over a range of frequencies then yields the 

dispersion curves. In general, multiple roots of the dispersion function may exist at a 

given frequency, corresponding to multiple modes of Rayleigh wave propagation. 

Numerical methods for determining the roots are discussed in later sections. 

2.5.1.2. Case 2: Degeneration of solution for a layered, free plate 

The solution for a free plate consisting of N-1 layers can be obtained by 

considering a medium for which the bottom half-space (layer N) is a vacuum. Equation 
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(2.99) indicates that the stresses and displacements at the bottom of the last layer (N-1) 

are related to those on the free surface of the top layer through 

1 1 1 1 0( ) ( ) ( )N N N N NS Z S Z R S Z− − −= =  (2.109) 

where 
1

1
N i

i N

R G
= −

= ∏  according to Eq. (2.101). 

The bottom and top of the plate are both free surfaces, so the stress components are zero:  

1 1 1 1 1 1( ) [ ( ) ( ) 0 0]T
N N N N N NS Z u Z w Z− − − − − −=    (2.110) 

1 1 1(0) [ (0) (0) 0 0]TS u w=    (2.111) 

Eq. (2.109) can thus be written in matrix form as 

11 12 13 141 1 1

21 22 23 241 1 1

31 32 33 34

41 42 43 44

( ) (0)
( ) (0)
0 0
0 0

N N

N N

r r r ru Z u
r r r rw Z w
r r r r
r r r r

− −

− −

     
         =
      
    

       

(2.112) 

which can be partitioned into sub-matrices as indicated by the dashed lines; 

11 12

21 22

R RA B
R R

    
=     

    0 0  
(2.113) 

which gives 

21R B⋅ = 0  (2.114) 

or 

31 32 1

41 42 1

(0) 0
(0) 0

r r u
r r w

     
⋅ =     

      
(2.115) 

Again, for a nontrivial solution with non-zero displacements at the plate’s top surface, the 

determinant of R21 must be zero, giving the characteristic (dispersion) function for quasi-

Rayleigh wavenumber or velocity as 

31 32
21

41 42

( , ) 0
r r

k R
r r

ω∆ = = =
 

(2.116) 



www.manaraa.com

41 

Note that wave propagation in a free plate will actually consist of Lamb waves for which 

the characteristic dispersion function is different from the one above (e.g., Lamb 1917, 

Ryden and Park 2004, Ryden et al. 2004). However, given the similarity of the composite 

A0 and S0 Lamb-wave modes to Rayleigh waves as discussed in Section 2.2, the Rayleigh 

wave approximation given in Eq. (2.116) may be useful for application to pavements. 

This topic is recommended for further study. 

As demonstrated in this section, the transfer matrix method is useful for 

determining theoretical dispersion curves for layered soil systems by solving for the roots 

of the scalar characteristic dispersion functions. However, the method does not directly 

provide the stresses and displacements at the layer interfaces within the soil profile. To 

determine these quantities, the formulation above can be modified to produce a global 

matrix, which is then converted to a global stiffness matrix. The formulations are 

presented in the following sections. 

2.5.2. Global matrix method 

To relate the vectors of displacements, stresses, and potentials at each layer 

interface, the equations presented above can be employed to formulate a global matrix in 

the frequency-wavenumber (ω−k) domain. The global matrix method can be traced back 

to Knopoff (1964), and is discussed further in Lowe (1995). The formulation for the cases 

of a layered soil profile overlying a half-space and a traction-free layered plate are 

presented below. 
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2.5.2.1. Case 1: Layered soil system with traction-free top surface overlying a 

half-space 

At the free surface of the first layer, Eq. (2.88) relates the potential function 

vector to the displacement and stress vector; 

1 0 1 1 0( ) ( )S Z T P Z=  (2.117) 

which gives the potential vector at the top of the layer as 

1
1 0 1 1 0( ) ( )P Z T S Z−=  (2.118) 

Equation (2.95) then relates the potential function vectors at the top and bottom of the 

first layer: 

1 1 1 1 0( ) ( )P Z E P Z=  (2.119) 

which gives 

1
1 0 1 1 1( ) ( )P Z E P Z−=  (2.120) 

Combination of Eqs. (2.118) and (2.120) gives 

1 1
1 1 0 1 1 1( ) ( )T S Z E P Z− −=  (2.121) 

which can be rearranged to 

1 01 1
1 1

1 1

( )
[ ]

( )
S Z

T E
P Z

− −  
− = 

 
0

 
(2.122) 

For the intermediate layers 2 ≤ n ≤ N-1, the stresses and displacements on the 

interface of the (n-1)th and nth layers at depth Zn-1 are equal: 

1 1 1( ) ( )n n n nS Z S Z− − −=  (2.123) 

which can be expanded and related to potential function vectors using Eq. (2.88): 

1 1 1 1 1( ) ( )n n n n nS Z T P Z− − − − −=  (2.124) 

1 1( ) ( )n n n n nS Z T P Z− −=  (2.125) 

Substituting Eqs. (2.124) and (2.125) into Eq. (2.123) gives 
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1 1 1 1( ) ( )n n n n n nT P Z T P Z− − − −=  (2.126) 

Recalling that Eq. (2.95) relates two potential function vectors at Zn-1 and Zn, one may 

write 

1
1( ) ( )n n n n nP Z E P Z−

− =  (2.127) 

Substituting Eq. (2.127) into Eq. (2.126) gives 

1
1 1 1( ) ( )n n n n n n nT E P Z T P Z−

− − −=  (2.128) 

which can be rearranged to 

1 11
1

( )
( )

n n
n n n

n n

P Z
T T E

P Z
− −−

−

 
 − =  

 
0

 
(2.129) 

Enforcing continuity of stresses and displacements on the interface of the last 

layer and the half-space gives 

1 1 1( ) ( )N N N NS Z S Z− − −=  (2.130) 

which can be written in terms of potential vectors according to Eq. (2.126) as 

1 1 1 1( ) ( )N N N N N NT P Z T P Z− − − −=  (2.131) 

and expressed in matrix form as 

[ ] 1 1
1

1

( )
( )

N N
N N

N N

P Z
T T

P Z
− −

−
−

 
− = 

 
0

 
(2.132) 

Assembling the matrices for the top layer from Eq. (2.122), intermediate layers 

from Eq. (2.129), and last layer and half-space from Eq. (2.132) gives the global matrix, 
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1 0
1 1

1 11 1
1

2 21 2 2
1

3 22 3 3

1
3 33 2 2

1
2 22 1 1

1 11

1

( )
( )
( )
( )

( )
( )
( )

( )

N NN N N

N NN N N

N NN N

N N

S Z
P ZT E
P ZT T E
P ZT T E

P ZT T E
P ZT T E
P ZT T
P Z

− −

−

−

−
− −− − −

−
− −− − −

− −−

−

 
  −     −    −      =    −     −    −   
  

0
 

 

(2.133) 

The above system of equations has 4N individual equations and 4(N+1) 

unknowns. Four additional equations must be provided to solve the system. Considering 

the boundary conditions that the top layer is traction-free and the bottom (Nth) layer is a 

half-space gives the additional equations: 

[ ]
1 0 1 0 1 0 ,1 0 ,1 0

T
1 1

( ) [ ( ) ( ) ( ) ( )]

(0) (0)

T
zz xzS Z u Z w Z Z Z

u w

σ τ=       

=     0  0  
(2.134) 

1 1 1 1 1

1 1

( ) [ ( ) ( ) ( ) ( )]

[0 0 ( ) ( )]

U U D D T
N N N N N N N N N N

D D T
N N N N

P Z Z Z Z Z
Z Z

− − − − −

− −

= Φ   Ψ   Φ   Ψ

=     Φ   Ψ  
(2.135) 

Substituting Eqs. (2.134) and (2.135) into Eq. (2.133) and eliminating the zero 

components gives the 4N by 4N matrix, 

1 0 (1,2)
1 1

1 11 (:,[1,2]) 1
1

2 21 2 2
1

3 32 3 3

1
3 33 2 2

1
2 22 1 1

1 11 (:,[3,4])

1 (3,4)

( )
( )
( )
( )

( )
( )
( )

( )

N NN N N

N NN N N

N NN N

N N

S Z
P ZT E
P ZT T E
P ZT T E

P ZT T E
P ZT T E
P ZT T

P Z

− −

−

−

−
− −− − −

−
− −− − −

− −−

−

 
  −     −    −       −   −   −   
 


 

 =







0

 
(2.136) 
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where 1
1 (:,[1,2])T −  denotes all rows and the first two columns of 1

1T − .  

The above square matrix equation can be written as 

[ ][ ] =S A 0  (2.137) 

which can be viewed as an eigenvalue problem, for which the characteristic (dispersion) 

function. 

1 1
1 (:,[1,2]) 1

1
1 2 2

1
2 3 3

1
3 2 2

1
2 1 1

1 (:,[3,4])

( , ) 0

N N N

N N N

N N

T E
T T E

T T E
k

T T E
T T E

T T

ω

− −

−

−

−
− − −

−
− − −

−

−
−

−
∆ = = =

−
−

−

S  

 

(2.138) 

at a given frequency will give the solution for Rayleigh wavenumber k, and thus phase 

velocity. 

2.5.2.2. Case 2: Degeneration of solution for a layered, free plate 

If the bottom layer is also traction-free, the medium becomes a layered, free plate. 

For the top layer, Eq. (2.120) can be written for this case as 

1 01
1

1 1

( )
( )

P Z
I E

P Z
−  

 − =  
 

0
 

(2.139) 

where I is the 4×4 identity matrix. For the bottom layer (N-1) of the plate, Eq. (2.129) 

with n = N-1 relates the potential vectors at the top and bottom of the layer. Assembling 

all layers together gives the global matrix, 



www.manaraa.com

46 

1 01
1

1 11
1 2 2

2 21
2 3 3

3 3

3 31
3 2 2

2 21
2 1 1

1 1

( )
( )
( )
( )

( )
( )
( )

N N
N N N

N N
N N N

N N

P Z
I E P Z

T T E P Z
T T E

P Z

P Z
T T E

P Z
T T E

P Z

−

−

−

− −−
− − −

− −−
− − −

− −

 
 −  
   −   
 −  
    =   
   
   −   
   −    

 



0

 
(2.140) 

Waves propagating along the free plate have no external energy input. Thus the 

conditions on the potentials for the top and bottom layers can be written as, 

1 0 1 0 1 0 1 0 1 0

1 0 1 0

( ) [ ( ) ( ) ( ) ( )]

[ ( ) ( ) 0 0]

U U

U U

D D T

T

P Z Z Z Z Z

Z Z

= Φ   Ψ   Φ   Ψ

= Φ   Ψ       
(2.141) 

1 1 1 1 1 1 1 1 1 1

1 1 1 1

( ) [ ( ) ( ) ( ) ( )]

[0 0 ( ) ( )]

U U D D T
N N N N N N N N N N

D D T
N N N N

P Z Z Z Z Z
Z Z

− − − − − − − − − −

− − − −

= Φ   Ψ   Φ   Ψ

=     Φ   Ψ  
(2.142) 

Inserting these boundary conditions into Eq. (2.140) and eliminating the zero components 

gives the 4N by 4N matrix, 

1 0 (1,2)
1

1 1(:,[1,2]) 1
1

2 21 2 2
1

3 32 3 3

1
3 33 2 2

1
2 22 1 1(:[3,4])

1 1 (3,4)

( )
( )
( )
( )

( )
( )

( )

N NN N N

N NN N N

N N

P Z
P ZI E
P ZT T E
P ZT T E

P ZT T E
P ZT T E

P Z

−

−

−

−
− −− − −

−
− −− − −

− −

 
  −     −    −   =       −     −    
  

0


 

 

(2.143) 

which can be written as 

[ ][ ] =S A 0  (2.144) 

The characteristic (dispersion) function for this case is 
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1
(:,[1,2]) 1

1
1 2 2

1
2 3 3

1
3 2 2

1
2 1 1(:[3,4])

( , ) 0

N N N

N N N

I E
T T E

T T E
k

T T E
T T E

ω

−

−

−

−
− − −

−
− − −

−
−

−
∆ = = =

−
−

S
 

 

(2.145) 

The characteristic function can also be derived from the boundary conditions of 

traction-free top and bottom surfaces of the free plate. For the last layer, Eq. (2.88) relates 

the potential function vector at the ZN-1 interface to the displacement and stress vector at 

the ZN free surface: 

1 1 1 1 1

1 1 1 2
1

1 1 1 2 2 2

( ) ( )
( )

( )

N N N N N

N N N N

N N N N N N

S Z T P Z
T E P Z
T E T T P Z

− − − − −

− − − −

−
− − − − − −

=

=

=  

(2.146) 

which can be written as 

2 21
1 1 1 2

1 1

( )
( )

N N
N N N N

N N

P Z
T E T T I

S Z
− −−

− − − −
− −

 
 − =  

 
0

 
(2.147) 

Assembling all layers together gives a global matrix, 

1 0
1 1

1 11 1
1

2 21 2 2
1

3 32 3 3

1
3 33 2 2

1
2 21 1 1 2

1 1

( )
( )
( )
( )

( )
( )
( )

N NN N N

N NN N N N

N N

S Z
P ZT E
P ZT T E
P ZT T E

P ZT T E
P ZT E T T I
S Z

− −

−

−

−
− −− − −

−
− −− − − −

− −

 
  −     −    −   =       −     −    
  

0


 

 
(2.148) 

Enforcing zero shear and normal stress on the top and bottom surfaces of the plate; 
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[ ]T
1 0 1 1( ) (0) (0)S Z u w=     0  0  (2.149) 

[ ]T
1 1 1 1 1 1( ) ( ) ( )N N N N N NS Z u Z w Z− − − − − −=     0  0  

(2.150) 

Applying these boundary conditions and eliminating the zero components in Eq. (2.148) 

gives the 4N by 4N matrix, 

1 0 (1,2)
1 1

1 11 (:,[1,2]) 1
1

2 21 2 2
1

3 32 3 3

1
3 33 2 2

1
2 21 1 1 2 (:,[1,2])

1 1 (1,2)

( )
( )
( )
( )

( )
( )

( )

N NN N N

N NN N N N

N N

S Z
P ZT E
P ZT T E
P ZT T E

P ZT T E
P ZT E T T I

S Z

− −

−

−

−
− −− − −

−
− −− − − −

− −

 
  −     −    −   =       −     −    
  

0


 

 

(2.151) 

which can be written as 

[ ][ ] =S A 0  (2.152) 

The characteristic (dispersion) function is 

1 1
1 (:,[1,2]) 1

1
1 2 2

1
2 3 3

1
3 2 2

1
1 1 1 2 (:,[1,2])

( , ) 0

N N N

N N N N

T E
T T E

T T E
k

T T E
T E T T I

ω

− −

−

−

−
− − −

−
− − − −

−
−

−
∆ = = =

−
−

S
 

 

(2.153) 

2.5.3. Stiffness matrix method 

The above global matrix method involves displacements, stresses and potentials at 

the layer interfaces. The potentials can be eliminated to obtain a global stiffness matrix 

relating only stresses and displacements at the layer interfaces, similar to a finite element 
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force-displacement stiffness matrix. The stiffness matrix approach was presented by 

Kausel and Roesset (1981), Gucunski and Woods (1992), and Ganji et al. (1998). Its 

formulation is detailed below.  

2.5.3.1. Case 1: Layered soil system with traction-free top surface overlying a 

half-space  

Recalling Eqs. (2.97) and (2.98), the stresses and displacements on the top (Zn-1) 

and bottom (Zn) interfaces of layer n can be related by 

1( ) ( )n n n n nS Z G S Z −=  (2.154) 

Using the expressions for Tn and En in Eqs. (2.87) and (2.94), the inverse and matrix 

products in the above equation can be derived as 

1
2

1
2 2 2

1
2 2 21

12
2 2 2

1
2 2 2

n R
R

n n

n R
R

n n
n

n Rn R
R

n n

n R
R

n n

a ikik
q q

a ikik
s s

T
a ika k ik
q q

a ikik
s s

µ µ

µ µ

µ µ

µ µ

−

 − − 
 
 
 
 =

−  − − 
 
 − − 
   

0 0 0
0 0 0
0 0 0
0 0 0

n n

n n

n n

n n

n n n n n n n n

n n n n n n n n

q d
R n R n

s d
n R n R

n n q d
n R n n R n

s d
R n n R n n

q d s d q d s d
R n R n

q d s d q d s d
n R n R

ik s ik s e
q ik q ik e

T E
a i k s a i k s e

i k q a i k q a e

ik e s e ik e s e
q e ik e q e ik e
a

µ µ µ µ
µ µ µ µ

µ

−

−

− −

− −

− − −   
  −   =
 2 −2 
  −2 2   

− − −
−

=
n n n n n n n n

n n n n n n n n

q d s d q d s d
n R n n R n

q d s d q d s d
R n n R n n

e i k s e a e i k s e
i k q e a e i k q e a e

µ µ µ
µ µ µ µ

− −

− −

 
 
 
 2 −2
 
−2 2   

and Gn can be written as 
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2

1
2 2 2

21
2

n n n n n n n n

n n n n n n n n

n n n n n n n n

n n n n n n n n

n R
R

n n
q d s d q d s d

R n R n n
q d s d q d s d

n R n R
n q d s d q d s d

n R n R n n R n
q d s d q d s d

R n n R n n

a ikik
q q

ik e s e ik e s e a
q e ik e q e ik e

G
a k a e i k s e a e i k s e

i k q e a e i k q e a e

− −

− −

− −

− −

− −

 − − −
 − =
 − 2 −2
 
−2 2 

µ µ

µ µ µ µ
µ µ µ µ

1
2 2

1
2 2 2

1
2 2 2

R
R

n n

n R
R

n n

n R
R

n n

ikik
s s

a ikik
q q

a ikik
s s

 
 
 
 
 
 
 − − 
 
 − − 
 

µ µ

µ µ

µ µ

from which 
2

2
2

2
2

2
2

1(1,1) [ ]
2 2 2

1 1 1
2 2

1 cos( ) 2 cos( )
2

n n
n n

n n n n

n n n n

n n n n

s d
q dn R n

n Rq d s d
n R

s d q dn
Rs d q d

n R

n n n R n n
n R

a e k aG k e
a k e e

a e k e
a k e e

a is d k iq d
a k

= − − +
−

    = + − +    −     

 = − −

  

2
m

2

2

(1,2) [ ]
2 2 2

1 1
2 2

2 sin( ) sin( )
2

n n
n n

n n n n

n n n n

n n n n

q d
s dR n m n

n n s d q d
n R n

s d q dR n
n s d q d

n R n

R n
n n n n n

n R n

k i s a e aG s e
a k e q q e

k i as e e
a k e q e

k as is d iq d
a k q

= − − +
−

    = − − −    −     
 −

= − + −  

 

[ ]

2

2

2

1 1(1,3) [ ]
( 2 ) 2 2 2 2

1 1 1 1
( 2 ) 2 2

cos( ) cos( )
( 2 )

n n n n

n n n n

n n n n

n n n n

q d s d
R

n q d s d
n R

s d q dR
s d q d

n R

R
n n n n

n R

k i e eG
a k e e

k i e e
a k e e

k i is d iq d
a k

µ

µ

µ

= − − + +
−

    = + − +    −     

= −
−
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2 2

2

2

2

2

2

1(1,4) [ ]
( 2 ) 2 2 2 2

1 1 1
( 2 ) 2 2

sin( ) sin( )
( 2 )

n n n n

n n n n

n n n n

n n n n

s d q d
n n R R

n s d q d
n R n n

s d q dn R
s d q d

n R n

R
n n n n n

n R n

s e s k e kG
a k e q q e

s ke e
a k e q e

i ks is d iq d
a k q

µ

µ

µ

= − − +
−

    = − − −    −     
 

= − + −  

 

2

2

2

(2,1) [ ]
2 2 2

1 1
2 2

sin( ) 2 sin( )
2

n n
n n

n n n n

n n n n

n n n n

s d
q dR n n n

n n q d s d
n R n n

s d q dR n
ns d q d

n R n

R n
n n n n n

n R n

k i q a e aG q e
a k e s s e

k i a e q e
a k s e e

k a is d q iq d
a k s

= − + + −
−

    = − − −    −     
 −

= − + −  

 

2
2

2

2
2

2
2

1(2,2) [ ]
2 2 2

1 1 1
2 2

1 2 cos( ) cos( )
2

n n
n n

n n n n

n n n n

n n n n

q d
s dn R n

n Rs d q d
n R

s d q dn
R s d q d

n R

R n n n n n
n R

a e k aG k e
a k e e

ak e e
a k e e

k is d a iq d
a k

= − − +
−

    = − + + +    −     

 = − + −

 

2 2

2

2

2

2

2

1(2,3) [ ]
2 2 2 2 2

1 1 1
2 2 2

sin( ) sin( )
2

n n n n

n n n n

n n n n

n n n n

q d s d
n n R R

n q d s d
n R n n

s d q dR n
s d q d

n R n

R n
n n n n

n R n

q e q k e kG
a k e s s e

k qe e
a k s e e

i k qis d iq d
a k s

µ µ µ µ

µ µ

µ µ

= − − +
−

    = − − + −    −     
 

= − −  

 

[ ]

2

2

2

1 1(3,1) [ ]
2

1 1
2

2 cos( ) cos( )
2

n n n n

n n n n

n n n n

n n n n

q d s dn R
n q d s d

n R

s d q dn R
s d q d

n R

n R
n n n n

n R

a k iG e e
a k e e

a k i e e
a k e e

a k i is d iq d
a k

µ

µ

µ

= − − + +
−

    = + − +    −     

= −
−
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2 2 2
2

2

2
2

2

2
2

2

2(3,2) [ 2 ]
2 2 2

1 12
2 2

4 sin( ) sin( )
2

n n
n n

n n n n

n n n n

n n n n

q d
s dn n R n

n R nq d s d
n R n n

s d q dn
R n s d q d

n R n

n
R n n n n n

n R n

a e a k sG k s e
a k q q e e

ak s e e
a k e q e

i ak s is d iq d
a k q

µ

µ

µ

= − − +
−

    = − − + −    −     
 

= − −  
2 2 2

2
2

2
2

2

2
2

2

2(4,1) [ 2 ]
2 2 2

1 12
2 2

sin( ) 4 sin( )
2

n n
n n

n n n n

n n n n

n n n n

s d
q dn n R n

n R ns d q d
n R n n

s d q dn
R ns d q d

n R n

n
n n R n n n

n R n

a e a k qG k q e
a k s s e e

a e k q e
a k s e e

i a is d k q iq d
a k s

µ

µ

µ

= − − +
−

    = − − −    −     
 

= − + −  

 

(2,4) (1,3)n nG G=  (3,3) (2,2)n nG G=  (3,4) (1,2)n nG G=  

(4,2) (3,1)n nG G=  (4,3) (2,1)n nG G=  (4,4) (1,1)n nG G=  

Equation (2.154) can be expanded as 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

1

1

,n ,n 1

,n ,n 1

( ) ( )
( ) ( )
( ) ( )
( ) ( )

n n n n
n n n n

n n n n
n n n n

n n n n
zz n zz n

n n n n
xz n xz n

G G G Gu Z u Z
G G G Gw Z w Z

Z ZG G G G
Z ZG G G G

σ σ
τ τ

−

−

−

−

      
            =     
    
     

 (2.155) 

Defining the following two vectors and four sub-matrices: 

[ ( ) ( ) ]T
n n nU u z w z=    

  
,n ,n[ ( ) ( )]T

m zz xzS z zσ τ=    

11 12

21 22

11

n n
n

n n

G G
H

G G
 

=  
     

13 14

23 24

12

n n
n

n n

G G
H

G G

 
=  

    

31 32

41 42

21

n n
n

n n

G G
H

G G

 
=  

     

33 34

43 44

22

n n
n

n n

G G
H

G G

 
=  

    
Equation (2.155) can be written as 

111 12

21 22 1

( ) ( )

( ) ( )

n n
n nn n

n n
n nn n

U Z U ZH H
H HS Z S Z

−

−

    
=    

       
 (2.156) 

Upon defining the external loadings 
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1 1( ) ( )nn n np Z S Z− −=  (2.157) 

at the upper interface, and 

( ) ( )nn n np Z S Z= −  (2.158) 

at the lower interface, Eq. (2.156) can be expressed in terms of external loads as 

111 12

121 22

( ) ( )
( ) ( )

n n
n n n n

n n
n n n n

U Z U ZH H
p Z p ZH H

−

−

    
=     −      

(2.159) 

The first equation is 

11 1 12 1( ) ( ) ( )n n
n n n n n nU Z H U Z H p Z− −= +  (2.160) 

which gives the loading vector in terms of the displacement and stress vectors as 

11 1
1 12 11 12

( )
( ) ( ) ( )

( )
n nn n n

n n
n n

U Z
p Z H H H

U Z
−− −

−

 
 = −   

    
(2.161) 

The second equation in (2.159) is 

21 1 22 1( ) ( ) ( )n n
n n n n n np Z H U Z H p Z− −− = +  (2.162) 

Substituting Eq. (2.161) into Eq. (2.162) gives 

1 1
21 1 22 12 11 1 12

1 1
21 22 12 11 1 22 12

( ) ( ) [ ( ) ( ) ( ) ( )]

( ( ) ) ( ) ( ) ( ))

n n n n n
n n n n n n n n

n n n n n n
n n n n

p Z H U Z H H H U Z H U Z
H H H H U Z H H U Z

− −
− −

− −
−

− = + − +

= − +  
or in matrix form, 

11 1
21 22 12 11 22 12

( )
( ) ( ) ( )

( )
n nn n n n n n

n n
n n

U Z
p Z H H H H H H

U Z
−− −  

 = − + −   
   

(2.163) 

Assembling Eq. (2.161) and Eq. (2.163) gives the stiffness matrix relating external 

loadings to displacements at the layer interfaces; 

12 11 12

21 22 12 11 22 12

1 1
1 1

1 1

( ) ( )( ) ( )
( ) ( )( ) ( )

n n n
n n n n

n n n n n n
n n n n

p Z U ZH H H
H H H H H Hp Z U Z

− −
− −

− −

 −   
=      − + −      

(2.164) 

or finally, 
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11 12

21 22

1 1( ) ( )
( ) ( )

n n
n n n n

n n
n n n n

p Z U ZK K
K Kp Z U Z

− −    
=     

      
(2.165) 

where the 2×2 sub-matrices are 

11 12 11

1( )n n nK H H−= −    
12 12

1( )n nK H −=  

21 21 22 12 11

1( )n n n n nK H H H H−= − +   
22 22 12

1( )n n nK H H −= −  

For the last interface at depth ZN-1, Eq. (2.88) can be used to relate the half-space 

potential vector to the vector of displacements and stresses: 

1 1( ) ( )N N N N NS Z T P Z− −=  (2.166) 

where NT   is given by Eq. (2.87), and 1 1( )N NP Z− −  satisfying the half-space condition is 

given by Eq. (2.135). The above equation can therefore be written as 

1

1

, 1 1

, 1 1

( ) 0
( ) 0
( ) ( )
( ) ( )

N N R N R N

N N N R N R
D

zz N N N R N N R N N N
D

xz N N R N N R N N N N

u Z ik s ik s
w Z q ik q ik

Z a i k s a i k s Z
Z i k q a i k q a Z

σ µ µ µ µ
τ µ µ µ µ

−

−

− −

− −

− − −     
     −     =
  2 −2 Φ   
     −2 2 Ψ    

 (2.167) 

Defining the following three vectors and two sub-matrices: 

1 1 1( ) [ ( ) ( ) ]T
N N N N N NU Z u Z w Z− − −=     

1 , 1 , 1( ) [ ( ) ( )]T
N N zz N N xz N NS Z Z Zσ τ− − −=    

1 1 1( ) [ ( ) ( )]D D T
N N N N N NQ Z Z Z− − −= Φ   Ψ  

13 14

23 24

12

N N
N

N N

T T
H

T T

 
=  

    

33 34

43 44

22

N N
N

N N

T T
H

T T

 
=  

    

and eliminating zero components in Eq. (2.167) gives 

1 12
1

221

( )
( )

( )

N
N N

N NN
N N

U Z H
Q Z

HS Z
−

−

−

   
=   

    
 (2.168) 

from which the potential vector can be expressed in terms of the displacement vector and 

stress vector, respectively, as 

1
1 12 1( ) ( ) ( )N

NN N NQ Z H U Z−
− −=  (2.169) 
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1
1 22 1( ) ( ) ( )N

NN N NQ Z H S Z−
− −=  (2.170) 

The above two equations can be combined to eliminate the potential vector, giving the 

stress vector in terms of the displacement vector as 

1
1 22 12 1( ) ( ) ( )N N

N NN NS Z H H U Z−
− −=  (2.171) 

Defining the external loading 1 1( ) ( )NN N Np Z S Z− −= at the ZN-1 interface, Eq. (2.171) can 

be rewritten in stiffness-matrix form as 

1 1( ) ( )N
NN N Np Z K U Z− −=  (2.172) 

where 

1
22 12( )N N NK H H −=  (2.173) 

By combining Eqs. (2.165) and (2.172), the 2(N-1)×2(N-1) global stiffness matrix for the 

entire layered structure can be assembled as K=p u , where 

1 1
11 12
1 1 2 2
21 22 11 12

2 2 3 3
21 22 11 12

3 3 4 4
21 22 11 12

3 3 2 2
21 22 11 12

2 2 1 1
21 22 11 12

1 1
21 22

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

N N N N

N N N N

N N N

K K
K K K K

K K K K
K K K K

K

K K K K
K K K K

K K K

− − − −

− − − −

− −

 
 + 
 +
 

+ =
 
 

+ 
 +
 

+  

  

 

(2.174) 

and the global vector of external loads applied at the layer interfaces is   

0 1 1[ ... ]T
Np p p −=p

 

where superposition of the interfacial loads from the layers above and below gives the 

total resultant load vector at each layer interface, i.e.  

0 1 0

1

( )   for interface  0
( ) ( )   for interfaces  1 1n n n n n

p p Z n
p p Z p Z n N+

= =

= + ≤ ≤ −  
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For the case of vertical loading 0zz vpσ =  at the free surface as in seismic surface wave 

testing, the first 2×1 vector element in the global loading vector is 

0 1 0 1 0 0( ) ( ) [ (0) (0)] [ 0]T T
zz xz vp p Z S Z pσ τ= = = =  

while all other elements are zero: 

[ ]
1 1( ) ( ) ( ) ( )

( ) ( ) 0 0 ,        1 1
n n n n n n n n n

T
n n n n

p p Z p Z S Z S Z

S Z S Z n N
+ += + = − +

= − + = ≤ ≤ −  

in which continuity of stresses at the interfaces was invoked in the next to last step. 

Therefore, for analyzing surface wave tests in which vertical loads are applied only at the 

surface, the global stiffness matrix for the entire soil model is 

01 1
11 12

11 1 2 20
21 22 11 12

22 2 3 3
21 22 11 12

33 3 4 4
21 22 11 12

4

3 3 2 2
21 22 11 12

2 2 1
21 22 11

11
1221

1
22

0
0
0

0
0
0

N N N N

N N N

NN

N N

u
K K

up
K K K K

u
K K K K

u
K K K K

u

K K K K
K K K

KK
K K

− − − −

− − −

−−

−

 
   +   
   +
   

+   
   =
   

+   
   +
   
   
   

+ 

  



4

3

2

1

N

N

N

N

u
u
u
u

−

−

−

−

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

where 0 0[ 0]T
vp p=  and 1 1 1( ) [ ( )    ( )]T

n n n n n n nu U Z u Z w Z+ + += = . Dividing the above into 

sub-matrices as indicated by the dashed lines gives 

0 0p u    
=     

    
11

0 u
12

21 22

K K

K K  
(2.175) 

The propagation of a plane Rayleigh wave in semi-infinite layered media means 

that displacements can exist without loading at the free surface nor incoming waves from 

the half-space. Thus, the solution for Rayleigh waves must satisfy K =u 0 , and the 

characteristic (dispersion) function is therefore 

( , ) 0k Kω∆ = =  (2.176) 
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2.5.3.2. Case 2: Degeneration of solution for a layered, free plate 

If the bottom layer above the half-space is also considered traction-free on its 

bottom (i.e., the half-space is a vacuum), the layered system becomes a free plate. The 

stiffness matrix for the entire layered structure will then be the same as in Eq. (2.174), but 

with 0NK =   

1 1
11 12
1 1 2 2
21 22 11 12

2 2 3 3
21 22 11 12

3 3 4 4
21 22 11 12

2 2 1 1
21 22 11 12

1 1
21 22

0 0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0

N N N N

N N

K K
K K K K

K K K K
K K K K K

K K K K
K K

− − − −

− −

 
 + 
 +
 = + 
 
 

+ 
  

  

 
(2.177) 

2.6. Matrix Modeling Theoretical Dispersion Curves 

Numerical solutions can be obtained for any of the matrix methods presented in 

the preceding sections to yield theoretical dispersion curves for a layered structure having 

known properties. This procedure is referred to as the forward analysis. In searching for 

the roots to the characteristic dispersion equations, four main solution techniques are 

typically used. These include the bisection searching technique (Nazarian 1984), two 

dimensional searching technique (Lowe 1995), smallest absolute determinant (Supranata 

2006), and phase-velocity scanning technique (Ryden and Park 2006).  

The bisection searching technique attempts to find an appropriate pair of ω and k 

(real wavenumber) to make the real part of the determinant in the characteristic function 

equal to zero. Because the imaginary part of the determinant is typically very small 

compared to the real part, the imaginary part can usually be neglected without an 
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appreciable loss of accuracy. The two dimensional searching technique attempts to find 

an appropriate pair of ω and k (complex wavenumber) to make both the real and 

imaginary parts of the determinant in the characteristic function equal to zero. When the 

imaginary part is significant, two dimensional searching is needed to find the complex 

wavenumber root, which accounts for energy loss through attenuation and/or leaky wave 

modes. The solution of the characteristic function can also be determined by searching 

for the smallest absolute determinant in place of the zero determinant. Application of the 

phase-velocity scanning technique for calculating theoretical dispersion curves can avoid 

the need for time-consuming two-dimensional searches and some associated numerical 

instabilities. 

2.6.1. Zero determinant: bisection searching technique for real wavenumber 

It is generally not possible to find the roots of the dispersion function analytically, 

as it contains many complicated functions of two independent variables. Therefore, one 

common solution technique is to fix the value of one variable and use mathematical 

optimization methods to solve for the value of the other variable numerically. If the 

frequency ω is fixed, one dimensional searching techniques can be used to solve for 

values of wavenumber k (roots) which satisfy the dispersion function ( , ) 0kω∆ = . During 

this solution process, the dispersion function may be complex-valued for some 

combinations of ω and k, with no real-valued solutions for ω and k values satisfying the 

complex-valued ( , )kω∆ . In such cases, only the real part of the dispersion function is 

considered to obtain a dispersion curve over the frequency range of interest. As the 

Rayleigh wave velocity is related to wavenumber and frequency through /R RV kω= , the 
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dispersion relationship between frequency and phase velocity can be built by repeating 

the above search over a range of wavenumbers.  

For a given frequency, there can be multiple roots for wavenumber k, in which 

case the corresponding phase velocities correspond to multiple modes. The lowest 

velocity corresponds to the fundamental mode (M0) and each of the next higher 

velocities correspond to the next higher modes (first higher mode M1, second higher 

mode M2, etc.). An example of multi-mode theoretical dispersion curves in shown in 

Figure 2.20 in both the frequency-phase velocity and frequency-wavenumber domains. 

The real and imaginary components of the corresponding dispersion function at 15 Hz are 

shown for a searched range of wavenumbers in Figure 2.21, illustrating that the range of 

the real part is significantly larger than that of the imaginary part. The variation of the 

real part with wavenumber is illustrated in Figure 2.22, showing two wavenumber roots 

where the sign changes at k1=0.207 rad/m and k2=0.148 rad/m. These two wavenumbers 

can be seen in the dispersion curves of Figure 2.20b at a frequency of 15 Hz for modes 

M0 and M1, with the corresponding phase velocities 1 1/ 455 m/sRV kω= =   and 

2 2/ 637 m/sRV kω= =  apparent in Figure 2.20a. 

a) 

 

b) 

 
Figure 2.20 Multi-mode dispersion curves in a) frequency and phase-velocity domain, b) 

frequency and wavenumber domain 
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Figure 2.21 Real and imaginary parts of dispersion function for a search range of 

wavenumber. 

 
Figure 2.22 Variation of real part of dispersion function with wavenumber at frequency 
of 15 Hz. (a): full range plot, (b): close-up showing zero crossings, (c): normalized real 
part Re( ) / Re( ) ( )realSign∆ ∆ = ∆  indicating two wavenumber roots Re( ) 0∆ =  where sign 

changes. 
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2.6.2. Zero determinant: two dimensional searching technique for complex 

wavenumber 

Lowe (1995) proposed a two dimensional searching technique that fixes one real 

variable (frequency or real wavenumber) and solves for the remaining real variable and 

the imaginary wavenumber. The solution can be found by iteratively locating the 

minimum of the absolute value of the characteristic function, alternately varying one of 

the unknowns and holding the others constant, as illustrated in Figure 2.23. The search 

starts with a sweep of frequency at a fixed imaginary wavenumber, for which a minimum 

of the absolute value of the function is found at point A. The frequency is then fixed and 

the imaginary wavenumber is varied to find a new minimum at point B. Alternating 

searches over frequency and imaginary wavenumber are continued to find a minimum 

which is acceptably close to the origin and makes both parts of the characteristic function 

close to zero.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.23 Two dimensional search technique (after Lowe, 1995). 
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2.6.3. Smallest absolute determinant technique 

Supranata (2006) argued that the determinant is not a good measure of singularity 

of a matrix, because it can be difficult to compute accurately as its value tends to be very 

small or very large. He proposed that the singularity of a matrix can better be 

characterized by its minimum absolute eigenvalue. Figure 2.24 shows an example of the 

variation of absolute eigenvalues with wave velocities for a theoretical soil model, for 

which the local minimum values correspond to the roots of the characteristic dispersion 

function. In Supranata’s work, the use of the determinant for the theoretical soil model 

produced errors in the roots resulting in incorrect dispersion functions. However, the 

determinant was used for the characteristic function in this study to calculate the 

dispersion curves for the same soil model, resulting in duplication of Supranata’s 

“correct” dispersion curves. The incorrect curves could not be duplicated using the 

determinant. Therefore, the minimum absolute eigenvalue method was not studied 

further.   

 

 

 

 

 

 

 

 

 

 

Figure 2.24 Multi-mode dispersion image characterized by minimum absolute 
eigenvalues. (from Supranata 2006) 
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2.6.4. Phase-velocity scanning technique 

The phase-velocity scanning technique was originally introduced in Park et al. 

(1998) as a wavefield transformation method for processing multichannel field 

seismograph records. Ryden and Park (2006) combined the phase-velocity scanning 

technique with fast Fourier transforms and Hankel transforms to obtain theoretical 

dispersion images without the need for computationally intensive and time-consuming 

searches and their associated numerical instabilities. The phase-velocity scanning 

technique for constructing experimental dispersion images from actual and simulated 

field data will be detailed in Chapter 3. A brief overview of its application to theoretical 

dispersion images is presented below. 

The static condensation method can be used to solve the partitioned stiffness 

matrix equation given in Eq. (2.175): 

    
=     

    
0 011p u

0 u
12

21 22

K K

K K  
The first sub-equation is 

+ =0 011u u p12K K  (2.178) 

and the second equation is 

+ =0u u 021 22K K  (2.179) 

From the second equation, the displacement below the ground surface can be expressed 

in terms of the displacement on the ground surface as 

1−= − 0u u22 21K K  (2.180) 

Substituting Eq. (2.180) into Eq. (2.178) gives 

1( )−− =0 011 u p12 22 21K K K K  (2.181) 

from which the displacement on the ground surface is 
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1 1( )− −= −0 011u p12 22 21K K K K  (2.182) 

Substituting Eq. (2.182) into Eq. (2.180) then gives the displacement at the internal layer 

interfaces: 

1 1 1( )− − −= − − 011u p22 21 12 22 21K K K K K K  (2.183) 

Combining Eqs. (2.182) and (2.183) gives the interfacial displacements for the entire 

model: 

1 1

1 1 1

( , ) [ ]

( )
( )

T
nu k ω

− −

− − −

=

 −
=  − − 

0

0



11

11

u u

p12 22 21

22 21 12 22 21

K K K K

K K K K K K  

(2.184) 

For surface wave testing with vertical impacts at the soil surface, the applied 

loading can be mathematically approximated as uniform, axisymmetric and vertical with 

intensity P0 and radius R0. The load can then be transformed from the time-spatial domain 

( ( , )p r t ) to the frequency-spatial domain ( ( , )np r ω ) using the Fourier transform (see 

Appendix): 

( , ) ( , ) ni t
np r p r t e dtωω

∞ −

−∞
= ∫  

(2.185) 

The Hankel transform can then be used to transform from the spatial domain to 

the wavenumber domain (see Appendix): 

00
( , ) ( , ) ( )n np k p r J kr rdrω ω

∞
= −∫  

(2.186) 

where 0J  is the Bessel function of the first kind of order 0. Using the following 

fundamental property of Bessel functions (Wylie and Barrett 1982, p. 592):  

1

0 1 1 10
( ) ( )

x
J x xdx x J x=∫  

(2.187) 

for the loading with uniform intensity and uniform spectral content 0( , )np r Pω =  and 

radius 0r R= , the integral of Eq.(2.186) can be evaluated as: 
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0

00

0 02 0

0
0 1 02

0 0
1 0

( , ) ( , ) ( )

1 ( )( ) ( )

( )

( )

n n

R

p k p r J kr rdr

P J kr kr d kr
k
P kR J kR
k
P R J kR

k

ω ω
∞

= −

= −

= −

= −

∫

∫

 

(2.188) 

The above equation shows that the loading in the frequency-wavenumber domain 

has uniform frequency content, and varies with wavenumber according to the Bessel 

function of the first kind of order 1. If the impact loading is only in the vertical direction, 

the loading vector at the surface 0p becomes 

0 0
1 0[ ( ) 0]TP R J kR

k
= −0p

 
(2.189) 

For propagation of Rayleigh waves, the free surface outside of the small loading area has 

zero stress: 

1 0( ) [0 0]TS Z =  (2.190) 

The resultant of the applied load and zero stress is therefore 

0 0
1 0 1 0 1 0( ) ( ) [ ( ) 0]TP Rp Z S Z J kR

k
= + = −0p

 
(2.191) 

Denoting the displacement on the ground surface due to a unit vertical loading in 

Eq. (2.184) as 0 0[   ]Tu w=u  0 , the total vertical displacement at the surface under the 

action of the loading 0p can be expressed as 

0 0
0 1 0 0( )t

P Rw J kR w
k

= − 

 
(2.192) 

The inverse Hankel transform can then be used to transform the displacements from the 

wavenumber domain back to the spatial domain: 
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0 00

0 0
1 0 0 00

0 0 1 0 0 00

( , ) ( )

( ) ( )

( ) ( ))

n tU r w kJ kr dk

P R J kR w kJ kr dk
k

P R J kR J kr w dk

ω
∞

∞

∞

=

 = −  

= −

∫

∫

∫





 

(2.193) 

In the phase-velocity scanning method (Park 1998), the above displacements at 

different offsets (r) are normalized by their maximum values, which discards the 

amplitude (i.e., attenuation) information but preserves phase information. The normalized 

displacements are denoted as 

( , )( , )
max( ( , ))

n
n

n

U rU r
U r

ωω
ω

=
 

(2.194) 

The phase-velocity scanning procedure then transforms the normalized displacement in 

the spatial-frequency domain to spectral values in the phase velocity-frequency domain: 

/

0
( ) ( , ) ( , ) phi r V

f ph ph n nA V A V U r e drωω ω∞ −= = ∫  (2.195) 

where the subscript f  denotes the summed (integrated) amplitude ( )f phA V  at the 

specific frequency 2n fω π=  for a trial value of scanning phase velocity phV . For 

theoretical dispersion calculations, the integral in the above equation can be performed 

numerically with r being a continuous variable. For actual field data with a finite number 

of sensor offsets, the integral is replaced with a summation over the discrete receiver 

offsets rn, hence the term “summed amplitude”. 

For the same fixed frequency, varying the scanning phase-velocity in Eq. (2.195) 

gives different spectral values of summed amplitude. The spectral values are then also 

normalized by their maximum values as 

( )
( )

max( ( ) )
f ph

f ph
f ph

A V
A V

A V
=

 
(2.196) 
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The procedures of Eqs. (2.193)−(2.196) are then repeated for other frequencies of 

interest, and the normalized summed amplitudes ( )f phA V  are plotted as color contour 

surfaces in the frequency vs. phase-velocity domain (referred to as dispersion images), 

the peaks of which correspond to the multi-mode dispersion curves. 

2.7. Finite Element Modeling of Surface-wave Testing on a Half-space Media 

Although the matrix methods presented above can be used to model theoretical 

dispersion behavior of plane Rayleigh wave propagation, they cannot account for 

complex wave propagation phenomena in real-world situations, including 3D wave 

propagation, near/far field effects, cylindrical wave fronts, non-horizontal interfaces, and 

anomalies. To overcome such challenges for Rayleigh wave modeling, the finite element 

method was employed in this study to simulate surface-wave testing on a layered half-

space. Simulation of the half-space boundary (radiation) conditions by the finite element 

method requires specific strategies, such as infinite elements (Motamed et al. 2009), the 

perfectly matched layer (PML) technique (Berenger 1994, Drozdz 2008), or the 

absorbing layers using increasing damping (ALID) technique (Liu and Jerry 2003, 

Drozdz 2008). 

The infinite element technique can only handle incident waves that meet the 

Sommerfeld radiation condition (e.g., Drozdz 2008). FEM simulation of a transient 

impact on the traction-free surface does not meet this requirement, and causes noticeable 

reflected energy from the infinite element boundary (Drozdz 2008). Therefore, the 

infinite element technique is not suitable for modeling complex wave propagation in 

surface-wave testing of 2D/3D media, although it is a readily available modeling tool in 
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some commercial FE programs. For example, Abaqus offers the infinite element CINPE4 

for plane strain. 

The PML method is limited to the frequency domain using implicit solvers, and 

an inverse Fourier transform is needed to recover the time domain signal. Although PML 

requires a smaller model size than ALID, it is reported that simulation using PML in 

COMSOL is not more efficient than using ALID in ABAQUS (Drozdz 2008). 

The ALID method is implemented by simply surrounding the region of interest by 

additional material zones which have damping values that gradually increase with 

distance. The method is reported to have several advantages. First, users have the 

convenience of using ALID without any complex derivation and extra theory (Liu and 

Jerry 2003, Drozdz 2008, Bian et al. 2012). Second, users have a wide range of choices to 

simulate Rayleigh damping and/or recover time domain signals (Liu and Jerry 2003, 

Drozdz 2008, Bian et al. 2012). Third, users have the flexibility of implementing ALID in 

any available FE software for any 2D/3D complex model (Drozdz 2008, Bian et al. 

2012). Fourth, an explicit solver can be used (e.g., the central difference algorithm in 

ABAQUS) to simulate large models with greater speed and memory efficiency than an 

implicit solver when time domain results are needed (Drozdz 2008). Results of 

benchmark tests and surface wave test simulations using the ALID technique are 

presented in the following sections. 

2.7.1 FEM simulation of a homogeneous half-space with ALID 

To absorb energy and minimize unwanted reflections from artificial bottom and 

side boundaries of a finite-sized soil model, the ALID method was employed using the 

finite element program Abaqus 6.10-1 to simulate surface wave testing on a half-space. 
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The FEM model was axisymmetric and a vertical transient point impact was applied on 

the soil’s top surface along the axis of symmetry, as denoted by the red arrow in the 

figure. Analyses were performed using three different damping scenarios within a 10-

meter wide extended region consisting of ten one-meter wide sub-regions surrounding the 

region of study (Figure 2.25). The three damping scenarios in the extended region 

employed different Rayleigh damping ratios and are referred to as uniformly slightly 

damped, uniformly moderately damped, and gradually damped (ALID) cases, as detailed 

in Table 2.1. Rigid boundary conditions were applied outside the extended region, which 

normally causes incoming waves to be reflected, thus violating the half-space radiation 

condition. An example of the wave propagation simulation for the gradually damped 

model is shown in Figure 2.26, illustrating the high resolution of the study. 

 

 

 

 

Figure 2.25 Axisymmetric FEM soil 
model with ALID extended region. 

Figure 2.26 Wave propagating in the FEM 
model. Wavefront shown is von Mises 

stress. 
 

 

 

 

Region of study 
10 m×10 m 
VS=100 m/s 
υ=0.3 
ρ=1800 kg/m3 

α=2.5 
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Table 2.1 Rayleigh damping coefficients for soil model using three damping scenarios. 

Treatment 
Rayleigh damping coefficient, α (Damping ratio= α/2ω) 

Region  
of study 

 Extended region (1-meter wide zones) 

Slightly 
damped 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 

Moderately 
damped 2.5  100 100 100 100 100 100 100 100 100 100 

Gradually 
damped 2.5 

 
4 8 16 32 64 128 256 512 1024 2048 

The impact was imposed by specifying a step-function for nodal velocity over a 

patch, which was found to help minimize high-frequency problems caused by suddenly 

applied nodal forces. Surface velocity results of the FEM analysis indicate that the ALID 

technique is able to simulate the half space boundary condition reasonably well, by using 

a gradually damped region to absorb energy and minimize the reflection of waves from 

the artificial boundary (Figure 2.27 and Figure 2.28). Specifically, the vertical velocity on 

the soil surface at a distance of 9 m from the impact shows arrivals of P and S-waves, 

followed by R-wave arrivals near the expected time of 0.0971 s calculated using a 

Rayleigh-wave phase velocity of 92.7 m/s determined using the velocity ratio 

VR/VS=0.927 from Figure 2.14. Reflections from the rigid boundaries are clearly evident 

for the slightly damped case (Figure 2.27). The reflections are greatly reduced but still 

evident for the moderately damped case, and effectively removed for the gradually 

damped case. Figure 2.28 also indicates that the gradually damped boundary results in 

less artificial attenuation of motion than a moderately damped boundary region, thus 

reducing the sharp contrast in particle-velocity attenuation rate at the interface of the two 

regions. Figure 2.29 illustrates results of a parametric study of the problem domain size, 

indicating little change in response when the absorbing boundaries are moved further 
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away from the impact point by increasing the area of study from (10 m)2 to (20 m)2 with a 

10-meter wide extended region outside.  

  
Figure 2.27 Vertical velocity on soil 

surface 9 meters away from impact source. 

Figure 2.28 Attenuation of velocity 

motion. 

  
Figure 2.29 Effect of increasing the size of the region of study. 

The normalized velocity traces in the offset-time domain and corresponding 

simulated experimental dispersion images are shown in Figure 2.30 for the three damping 

scenarios. Since the medium is homogeneous and therefore non-dispersive, the dispersion 

images exhibit a constant phase velocity with frequency. The slightly damped case shows 

Reflected 
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significant reflections from the rigid boundary (Figure 2.30a), causing its dispersion 

image to suffer significant aliasing (Figure 2.30b). The moderately and gradually damped 

cases have no noticeable reflection waves (Figures 2.30c and e); and both dispersion 

images become clearer and smoother with reduced aliasing, especially for the gradually 

damped case (Figures 2.30d and f). 

a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
Figure 2.30 Normalized vertical surface velocity traces and corresponding dispersion 
images: a) and b) slightly damped, c) and d) moderately damped, e) and f) gradually 

damped. Theoretical dispersion “curves” shown as white dots. 
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2.7.2 Simulation of surface wave test on a layered soil system using FEM with 

ALID 

The ALID method was applied using the finite element program Abaqus 6.10-1 to 

simulate surface wave testing on the layered medium defined in Table 2.2. A vertical 

transient impact was applied on the top of the FE model along the axis of symmetry, as 

indicated by the red arrow in Figure 2.31. Vertical velocity was monitored along the free 

surface at 24 “geophone” locations having a horizontal spacing of 1 m and first offset of 

2 m. To model half-space radiation conditions, ALID with Rayleigh damping coefficients 

for the gradually damped case of Table 2.1 were used on the right lateral boundary as 

well as underneath the bottom layer. The extents of the entire model were 160 m by 40 

m, including a 10-meter wide extended region on the right side and bottom. The 

normalized vertical velocity signals at the geophone stations are plotted in Figure 2.32a to 

form multichannel records, from which dispersion data were calculated using the phase-

velocity intercept-time scanning method introduced in Chapter 3, resulting in the images 

of dispersion curves  shown in Figure 2.32b. The results show that the FEM simulation 

with the ALID region results in a clear dispersion image that is sharp and smooth, with 

minimal aliasing. 

Table 2.2 Parameters of layered soil model. 

Layer # VS (m/s) Poisson’s ratio, ν Density, ρ (kg/m3) Layer thickness, h (m) 
1 150 0.30 1800 2 
2 200 0.30 1800 3 
3 400 0.30 1900 ∞ (half space) 
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Figure 2.31 FEM simulation of MASW test on layered soil model of Table 2.2 with 

damping in extended region from gradually damped case of Table 2.1. Wavefront shown 
is von Mises stress. 

a) 

 

b) 

 
Figure 2.32 a) Normalized velocity traces from FEM simulation; b) simulated 

experimental dispersion image (FEM results in color contour) vs. theoretical dispersion 
curves (transfer matrix results in white dots). 

2.8. Conclusions 

This chapter provided a theoretical background on surface wave propagation in 

homogenous and layered media. The transfer matrix, global matrix, and stiffness matrix 

methods for calculating theoretical dispersion curves and displacements of ideal layered 

soil systems possessing uniform horizontal layers were detailed. Numerical issues in 

solving for roots of the characteristic dispersion functions were highlighted, and the 

effectiveness of the ALID method for FEM simulation of wave propagation in more 

general semi-infinite layered media types was demonstrated. The FEM simulation results 
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indicate that the ALID can simulate the half-space boundary well by using gradually 

increasing damping to absorb incident energy. The FEM models including the extended 

damping regions are of reasonable size, enabling acceptable computation times. The 

energy of reflected waves from the ALID extended region is much smaller than that of 

the surface waves, and the simulated dispersion images are therefore very smooth and 

clear with minimal aliasing. As will be examined in a later chapter, the FEM models with 

ALID regions can therefore be used to study wave propagation in more general layered 

soil systems, such as those possessing dipping layers, faults, folds, voids, inclusions, 

inhomogeneity, or anisotropy. 
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 PHASE-VELOCITY AND INTERCEPT-TIME CHAPTER 3.

SCANNING (PIS) TECHNIQUE FOR IMAGING SURFACE 

WAVE DISPERSION CHARACTERISTICS 

3.1 Abstract 

In geophysical surface wave methods, the ability to extract the true dispersion 

trends from surface wave field data is critical for inferring accurate stiffness profiles. 

However, dispersion images such as those generated by the widely used multichannel 

analysis of surface wave (MASW) wavefield transformation method of Park et al. (1998) 

are usually accompanied by numerical artifacts including side-lobes and aliasing, both of 

which decrease the dispersion image resolution and may lead to misinterpretation of 

dispersion modes. For example, the side lobes can be misinterpreted as higher or lower 

modes, which would introduce additional errors into the inverted stiffness profiles. To 

improve the resolution and sharpness of dispersion images by minimizing the side lobes, 

a new experimental dispersion analysis method is presented in this chapter. The new 

method employs scanning of the phase-velocities and intercept-times of a series of 

harmonic signals obtained by Fourier transformation of raw multichannel data in the 

space-time (x-t) domain. Results obtained from synthetic and real field data demonstrate 

that the newly developed method can yield high-quality dispersion images compared to 

those of the conventional MASW wavefield transformation method. In addition, the new 

method does not rely on the assumption that the impact point is the generation point of 

the Rayleigh waves, which is needed for the MASW wavefield transformation method. 
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3.2 Introduction 

As commonly applied in MASW analyses (e.g., Park et al. 1999a, Xia et al. 2000, 

2003, Song et al. 2007),  experimental dispersion images can be extracted from 

multichannel surface wave data to obtain apparent dispersion curves, which are used to 

infer the site structure (e.g., soil layer thickness and stiffness). Thus, a high-resolution 

dispersion image is of critical importance for accurate soil profiling via surface wave 

testing. Historically, experimental dispersion analysis methods have developed along two 

main branches: (1) the frequency-wavenumber (f-k) transform (e.g., Horike 1985, 

Gabriels et al. 1987, Santamarina and Fratta 1998) and (2) the slowness-frequency (p-f) 

transform (e.g., McMechan and Yedlin 1981, Park et al. 1998, Louie 2001, Obando et al. 

2010, O’Connell and Turner 2011).  

The f-k transform applies a 2D Fourier transform to the space-time field data. The 

time Fourier transform converts the data from the time (t) to the frequency (f) domain, 

and the spatial Fourier transform converts the data from the spatial (x) to the wavenumber 

(k) domain. The f-k method can be used to characterize the fundamental and higher 

modes of surface waves in the f-k domain. However, it typically requires numerous 

receivers because the total receiver spread (X) controls the wavenumber resolution 

∆k = π/X, whereas the geophone spacing ∆x controls the highest obtainable wavenumber 

kmax = π/∆xmin (Foti 2002, Stokoe et al. 2004, Tran 2008).  

The p-f transform employs the slant-stack scheme to extract dispersion 

information from the field data. It was developed by McMechan and Yedlin (1981) for 

active-source testing using two linear transforms: (1) the p-τ (phase slowness-time 

intercept) transform, which can be thought of as applying the slant-stack scheme to sum 
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field data along trial phase slowness (p = 1/Vph) lines with various intercept times, 

yielding traces with the summed amplitude as the vertical coordinate and the time 

intercept as the horizontal coordinate; and (2) the time Fourier transform of the p-τ traces, 

which provides a dispersion image in the form of spectral peaks (i.e., ridges of a contour 

plot) in the p-f domain.  

In addition to the two main f-k and p-f transforms, several variations and other 

methods have become popular in the past few decades. Park et al. (1998) proposed the 

active MASW wavefield transformation method using a similar phase-velocity scanning 

scheme, which first constructs harmonic signals from field data via the time Fourier 

transform, then slant-stacks the amplitudes of the harmonic signals along trial phase 

slowness lines which have a zero intercept time. Louie (2001) proposed the Refraction 

Microtremor (ReMi) method for use with passive seismic sources by applying p-τ 

(Thorson and Claerbout 1985) and p-f (McMechan and Yedlin 1981) transforms on 

recorded microtremors in both forward and reverse directions. Obando et al. (2010) 

improved the p-f transform as a phase-scanning approach to correct inaccurate time-shifts 

in the surface-wave walk-away method and to eliminate false apparent higher modes. 

O’Connell et al. (2011) proposed the IMASW (Interferometric Multichannel Analysis of 

Surface Waves) method by combining the p-f transform with interferometric time-domain 

dispersion analysis to improve the resolution of dispersion images at low frequencies.  

From the above review of existing methods, the following conclusions may be 

drawn: (1) all f-k and p-f methods apply the Fourier transform to the raw field data with 

respect to the recording time (e.g., McMechan and Yedlin 1981, Horike 1985, Gabriels et 

al. 1987, Santamaria and Fratta 1998, Park et al. 1998, Obando et al. 2010, O’Connell 
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2011), or to the slant-stacked data with respect to the intercept time (e.g., Louie 2001); 

and (2) all p-f methods apply the slant-stack scheme either to the field data directly (e.g., 

McMechan and Yedlin 1981, Louie 2001) or to the harmonic signals extracted from the 

field data (e.g., Park et al. 1998, Obando et al. 2010, O’Connell 2011). Thus, the Fourier 

transform and the slant-stack scheme are two effective techniques for extracting 

dispersion data. It is demonstrated herein that an appropriate combination of the two 

techniques in a new way can lead to experimental dispersion analysis methods with 

improved resolution and accuracy. 

An extensive review of literature on the subject reveals that experimental MASW 

dispersion images are typically accompanied by many side lobes as a result of spectral 

leakage, and also suffer from spatial aliasing effects (e.g., Park et al. 2001a, Ryden et al. 

2004, Park et al. 2005, Tran and Hiltunen 2008, Obando et al. 2010, O’Connell and 

Turner 2011, Park 2012). As mentioned above, these numerical artifacts decrease the 

resolution of dispersion images, and can lead to misidentification of dispersion modes. To 

overcome these deficiencies, a new experimental dispersion analysis method termed the 

Phase-velocity and Intercept-time Scanning (PIS) method is developed herein, which 

combines 2D Fourier transforms with the slant-stack scheme. In the PIS method, the time 

Fourier transform is first applied to the space-time (x-t) field data to obtain an array of 

harmonic motions in the space-frequency (x-f) domain that contains dispersion 

information (i.e., phase velocity for each discrete frequency component), as is done for 

the MASW method. Second, the slant-stack scheme is used to stack (i.e., sum) 

amplitudes of each of the individual harmonic motion components along trial “scanning” 

values of slowness, with scanned intercept times (τ) as well, providing a new series of 
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harmonic curves in the p-τ plane. Third, another Fourier transform is applied to the new 

curves, followed by auto-power spectrum analysis to yield the dispersion image in the 

form of spectral values. The key differences in the new method relative to conventional 

MASW analysis are (1) the additional dimension of scanning the intercept time, whereas 

the conventional analysis assumes an intercept time of zero, and (2) the use of auto-

power spectrum analysis, which presents the dispersion image amplitude in terms of 

power to greatly reduce effects of side lobes and aliasing. The performance of the newly 

developed PIS method is demonstrated below using both synthetic and real field data. 

3.3 Phase-velocity and Intercept-time Scanning (PIS) Method 

3.3.1 Synthetic data 

Parameters of a hypothetical soil model used to study the new PIS method are 

listed in Table 3.1. The theoretical fundamental-mode dispersion curve of the 

hypothetical model is shown in Figure 3.1, as obtained by the transfer matrix method 

described in Chapter 2. The theoretical dispersion curve was then used to define a set of 

synthetic sinusoidal surface wave displacements at each discrete frequency f as  

( , ) sin 2
( )

f

ph

xu x t f t
V f

π
  

= −      
 (3.1) 

where ( )phV f  is the frequency-dependent phase velocity from the theoretical dispersion 

curve, and x are the distances from the source to the receivers. The synthetic sinusoidal 

signals obtained from Eq. (3.1) are used instead of field data to demonstrate the 

performance of the PIS method for pure data that is not influenced by environmental 

noise, air waves, body waves, and near-field or far-field effects. 
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Table 3.1 Parameters of layered soil model. 

Layer # VS (m/s) Poisson’s ratio, ν Density, ρ (kg/m3) Layer thickness, h (m) 

1 122.5 0.45 1800 1 

2 250.0 0.45 1800 2 

3 380.0 0.45 1800 5 

4 560.0 0.45 1800 5 

5 735.0 0.45 1800 6 

6 850.0 0.45 1900 6 

7 900.0 0.45 1900 5 

8 1100.0 0.45 1900 5 

9 1308.0 0.45 2000 ∞ 

 

Figure 3.1 Fundamental-mode dispersion curve of the soil model in Table 3.1 calculated 
by the transfer matrix method of Chapter 2. 

3.3.2 Fourier transform to extract harmonic signals from field data 

The frequency content of the field data can be determined by applying the Fourier 

transform as the first step in MASW data analysis (Park et al. 1998, Obando et al. 2010, 

O’Connell et al. 2011). The raw field displacement (or alternatively, velocity or 

acceleration) data u(xa, t) are thus converted to the displacement spectra U(xa, f) at each 

offset distance by the finite-range continuous-time Fourier transform;  

2

0
( , ) ( , )tta a i ftU x f u x t e dtπ− =  ∫   (3.2) 
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where xa is the receiver offset with respect to the source point of Rayleigh wave 

generation, tt is the total recording time, dt is the differential time interval, and f is 

frequency in Hz. In reality, the field data are sampled at discrete times and offsets, so the 

fast Fourier transform (FFT) is used to numerically approximate Eq. (3.2). 

 According to Euler’s formula, Eq. (3.2) can be written as 

0

0 0

2 2

2 2 2 2

( , ) ( , )[cos(2 ) sin(2 )]

( , )cos(2 ) ( , )sin(2 )

( )

t

t t

ta a

t ta a

U x f u x t ft i ft dt

u x t ft dt i u x t ft dt

c id
c dc d i

c d c d

π π

π π

 = −

= −

= −

= + −
+ +

∫
∫ ∫   (3.3) 

where 
0

( , ) ( , ) cos(2 )tta ac c x f u x t ft dtπ= = ∫  and 
0

( , ) ( , )sin(2 )tta ad d x f u x t ft dtπ= = ∫ . 

The Fourier spectra U(xa, f) for each receiver offset xa are complex valued, and can 

therefore be expressed as the product of their amplitude A(xa, f) and phase P(xa, f) 

components as
 

( , ) ( , ) ( , )a a aU x f A x f P x f =    (3.4) 

where 

2 2( , )aA x f c d = +  (3.5) 

2 2 2 2
( , )

aa ic dP x f i e
c d c d

θ− = − =
+ +

 (3.6) 

and 

1tan 2
( )

a
a

a
ph

d xf
c V f

−  = = 
 

θ π  (3.7) 

Also, it is assumed that each spectral component propagates at its own  

frequency-dependent phase velocity (or velocities for multiple modes) that does not vary 
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with distance. The phase ( , )aP x f thus contains dispersion information, as it is a function 

of frequency (f), receiver offset with respect to the source point of Rayleigh wave 

generation (xa), and the actual phase velocity ( )a
phV f  which is frequency-dependent for a 

dispersive medium. The amplitude A(xa, f) contains information on spherical divergence 

and attenuation, which vary with offset and frequency, and can be useful for other 

analytical approaches that consider these effects. However, since the amplitude does not 

include any information on dispersion, the amplitudes A(xa, f) for each receiver offset xa 

can be normalized with respect to their maximum values without negatively affecting the 

dispersion analysis as 

( , ) ( , ) / ( , ) 1a a aA x f A x f A x f =   =  (3.8) 

Noting that ( , ) ( , )a aU x f A x f =   in Eq. (3.4), the normalized displacement spectra can 

be obtained from Eq. (3.4) as 

1

2 / ( )

( , ) ( , ) / U( , )

( , ) ( , )

a

a a
ph

a a a

a a

i

i fx V f

U x f U x f x f

A x f P x f

e

e

=

−

−

 ≡   

=  

=

=



θ

π

 (3.9) 

where f is known, and xa is assumed to be equal to the receiver offset from the impact 

location (x) in conventional MASW analysis (Park et al. 1998). However, because 

Rayleigh waves are produced by the interaction of P- and S-waves with the free surface, 

they develop beyond a finite distance from the source point in actual tests. As a result, the 

distance from a receiver to the generation point of Rayleigh waves can be less than the 

receiver-to-impact location distance, i.e. xa<x. This phenomenon, together with the fact 

that the spherical wavefronts can only be approximated as planar beyond a finite distance, 
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are referred to as the “near-field effects”. Near-field effects must be carefully considered 

when acquiring experimental data in field tests. However, the synthetic displacement 

signals in Eq. (3.1) define perfectly planar theoretical Rayleigh wavefronts that originate 

at the source point x=0 and are free of near-field effects.  If the impact point is assumed 

to be the generation point of the Rayleigh waves (x=xa, which may be an approximation 

for certain field test geometries), then the only unknown for real or simulated field data in 

Eq. (3.9) is the phase velocity, which can be determined by using the proposed PIS or 

conventional MASW phase-scanning methods. 

3.3.3 MASW wavefield transformation method 

The MASW wavefield transformation method (alternatively referred to as the 

MASW phase-velocity scanning scheme) was proposed for experimental dispersion 

analysis of active-source multichannel seismograph records (Park et al. 1998). 

Conceptually, this scheme can be thought of as summing the amplitudes of harmonic 

signals plotted in the space-time domain (for a given frequency) along a straight-line 

defined by a trial scanning phase velocity s
phV , (or equivalently, scanning phase slowness 

1/ s
s php V= ).  

In conventional MASW analysis, all trial phase slowness lines are chosen to go 

through the origin, which imposes a fixed zero intercept time, τ=0. In actual 

implementation, the calculations are performed in the frequency rather than the time 

domain for improved efficiency and accuracy. The frequency-domain calculations are 

implemented by first multiplying Eq. (3.9) by 2 / s
phi fx Ve π , which gives the value of the 

harmonic Fourier component ( , )aU x f  if it were plotted in the x-t domain, at its 
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intersection with the scanning phase slowness line at time / s
pht x V= . In practice, this is 

actually performed in the frequency domain by forming the following product with the 

Fourier-transformed field data of Eq. (3.9): 

2 / 2 ( / ( ) )( , )
s a a
ph phi fx V i f x V f taU x f e eπ π− − =  (3.10) 

where  

/ s
pht x V=  (3.11) 

In terms of the actual phase angle aθ  of the field data and the assumed scanning phase 

angle defined as 

2s
s

ph

xf
V

θ π=  (3.12) 

the product in Eq. (3.10) may be expressed as  

2 / ( )( , )
s a s
phi fx Va iU x f e eπ θ θ− − =  (3.13) 

For a single channel, this product will have a maximum real component equal to 1 and 

minimum imaginary component equal to 0 when ax x=  and s a
ph phV V= , or equivalently, 

when the actual and scanning phase velocities coincide, i.e. a sθ θ= .  

To find the optimum s
phV  considering the traces recorded at all offsets, the slant-

stack summation along the scanning phase velocity line ( s
phV ) at a certain frequency (f) is 

then calculated as 

1

2 /( ) ( , )
sN n ph

x i fx Vs a
f ph x

A V e U x f dxπ= ∫  (3.14) 

where xn is the distance between the impact point and the nth receiver. When the scanning 

phase velocity s
phV  is equal to the actual phase velocity a

phV  for a given frequency, the 
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stacked amplitude ( )s
f phA V  will have a maximum. For real field data sampled at a finite 

number of offset locations, Eq. (3.14) can be written in discrete form as 

1

1

1

2 /

2 / 2 / ( )

2 (1/ 1/ ( ))

( ) ( , )
N s

n ph

n

N s a a
n ph n ph

n
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n

x
i fx Vs a

f ph n
x x

x
i fx V i fx V f

x x

x
i f x V V f

x x

A V e U x f

e e

e

π

π π

π

=

−

=

−

=

=

=

=

∑

∑

∑

 (3.15) 

where the impact point was assumed to be the generation point of the Rayleigh waves, 

i.e. a
n nx x=  (Park et al. 1998, 2001a). 

The stacked amplitudes of the harmonic signals are calculated for a range of 

scanning phase velocities at each frequency of interest using Eq. (3.15). As will be shown 

below, a 2D dispersion image is then constructed in the form of a contour plot of the 

normalized stacked amplitude 

( )
( )

max( ( ))

s
f phs

f ph s
f ph

A V
A V

A V
=  (3.16) 

versus phase velocity and frequency. Theoretically, when the scanning phase velocity is 

perfectly equal to the actual velocity, ( )s
f phA V  will be equal to 0 (1 0)iNe N i− = ⋅ − . For 

real experimental data, however, the exponent in Eq. (3.15) will not be equal to zero due 

to discretization and a range of physical imperfections, and the numerically calculated 

value of ( )s
f phA V will be complex-valued with a small imaginary part. In the phase 

velocity scanning approach, a logical choice would therefore be to maximize the real part 

of Eq. (3.15) while minimizing the imaginary part towards zero. In practice, however, the 
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complex modulus (or ‘magnitude’) ( )s
f phA V  is commonly used in Eq. (3.16) to generate 

the 2D dispersion image: 

( )
( )

max( ( ) )

s
f phs

f ph s
f ph

A V
A V

A V
=  (3.17) 

A further analysis of the MASW phase-velocity scanning scheme is presented 

here to demonstrate that the only dispersion information used from the field data is the 

relative phase difference between receivers, and not the absolute phase difference relative 

to the source point. Thus the assumption that the impact point is the generation point of 

the Rayleigh waves (x=xa), is actually not necessary. For this purpose, the distance 

between the impact point and the nth receiver can be decomposed into two parts: 

1n nx x x= + ∆  (3.18) 

where x1 is the offset from the first receiver to the impact point, and Δxn is the distance 

between the nth and first receivers. Substituting Eq. (3.18) into Eq. (3.14) gives 

1 n

1

1 n

1

1

2 [ ]/

2 / 2 /

2 /
1

( ) ( , )

( , )

( )

sN ph

s sNph ph

s
ph

x i f x x Vs a
f ph nx

xi fx V i f x V a
nx

i fx V s
f ph

A V e U x f dx

e e U x f dx

e A V

π

π π

π

+∆

∆

=

=

=

∫

∫  (3.19) 

where 12 / s
phi fx Ve π does not contain any multichannel dispersion information and thus the 

variation of x1 does not change the magnitude of the dispersion image, it only applies a 

linear phase shift with frequency that is proportional to 1x . The fact that the closest-to-

source offset 1x  does not change the magnitude of the dispersion image for the same set 

of field data with an artificially varied x1 was demonstrated empirically by Park et al. 

(2001a) and Park (2012). The above equation now provides a theoretical explanation for 
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these empirical observations. If the actual 1x  is physically varied in a field setup, then the 

dispersion characteristics of the field data in ( , )a
nU x f  will also change (e.g., 

Park et al. 2000), which may be attributable to separation of higher modes, near-field 

effects, and attenuation.  

The term 

n

1

2 /
1( ) ( , )

sN ph
x i f x Vs a

f ph nx
A V e U x f dx∆= ∫ π  (3.20) 

contains the necessary dispersion information and can be further analyzed by substituting 

Eq. (3.9) to give  

n

1

2 / 2 / ( )
1( )

s a aN ph n ph
x i f x V i fx V fs

f ph x
A V e e dx∆ −= ∫ π π  (3.21) 

The distance between the actual generation point of the Rayleigh waves and the nth 

receiver can similarly be decomposed into two parts: 

1
a a
n nx x x= + ∆  (3.22) 

where 1
ax  is the offset from the first receiver to the generation point of the Rayleigh 

waves and Δxn is again the distance between the nth and first receivers. Substituting 

Eq. (3.22) into Eq. (3.21) gives 
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 (3.23) 

where 12 / ( )a a
phi fx V fe π−  does not contain any multichannel dispersion information, whereas 

( )n

1

2 1/ 1/ ( )
2 ( )

s aN ph ph
x i f x V V fs

f ph x
A V e dx∆ −

= ∫
π

 (3.24) 
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contains all the necessary multichannel dispersion information and is independent of the 

first receiver offsets 1x  and 1
ax . When the scanning phase velocity s

phV  is equal to the 

actual phase velocity a
phV  for a given frequency, the stacked amplitude 2( )s

f phA V  will 

have a maximum. Substituting Eq. (3.23) into Eq. (3.19) gives 

( )a
1 12 / / ( )

2( ) ( )
s a
ph phi f x V x V fs s

f ph f phA V e A V−
=

π
 (3.25) 

where a
1x  is unknown. Therefore, the term ( )a

1 12 / / ( )s a
ph phi f x V x V fe π −  can be eliminated as 

12 /a a
ph ai fx V ie eπ θ− −= , which is known from the Fourier-transformed field data by Eq. (3.9). 

From Eq. (3.25), it is immediately evident that 2( ) ( )s s
f ph f phA V A V= , so a dispersion 

image using the complex magnitude 2 ( )s
f phA V , i.e. 

( )
2

2
2

( )
( )

max ( )

s
f phs

f ph s
f ph

A V
A V

A V
=  (3.26) 

will be identical to that using ( )s
f phA V . However, the use of 2 ( )s

f phA V  has better 

conceptual clarity and can clearly demonstrate that the critical factor affecting the 

dispersion image is the relative phase difference between receivers. On the other hand, 

according to the discussion of Eq. (3.16), the real component should be maximized and 

the imaginary component minimized in the phase-scanning approach. Dispersion images 

defined using the real parts i.e.,   

( )
( )( )

Re
Re ( )

( )
max Re ( )

s
f phs

f ph s
f ph

A V
A V

A V
=  (3.27) 

and 
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( )
( )( )

2Re
2

2

Re ( )
( )

max Re ( )

s
f phs

f ph s
f ph

A V
A V

A V
=  (3.28) 

would therefore be different according to Eq. (3.25), and may prove useful as alternative 

dispersion images. 

3.3.4 Phase-velocity and intercept-time scanning (PIS) analysis 

As will be demonstrated below, the phase-velocity and intercept time scanning 

(PIS) technique proposed herein can remove the requirement for the assumption x=xa, 

and also reduce the side lobes and thereby the uncertainty in dispersion images. For the 

conceptual x-t domain interpretation of the MASW  phase scanning approach (e.g., Park 

et al. 1999a, Ryden et al. 2004, Park 2011), the proposed PIS technique allows each 

scanning phase slowness line to also be offset along the time axis by a scanned intercept 

time τs in Eq. (3.14), i.e.,  

s s
ph

xt
V

τ= +  (3.29) 

The final step in the PIS method is to perform an auto-power spectral analysis of 

the slant-stacked harmonic signals obtained via applying the phase-velocity and intercept-

time scanning scheme to the harmonic signals. A synthetic example of phase-velocity and 

intercept-time scanning on a 55 Hz pure sinusoidal signal defined by Eq. (3.1) is shown 

in Figure 3.2a. Three scanning phase-velocity lines are shown for velocities of 155, 165, 

and 175 m/s, all with the same intercept-time of τ=0.0227 s. The actual velocity for this 

example is 165 m/s.a
phV =  Figure 3.2b shows the normalized amplitudes along the three 

scanning lines; 

2 ( / )( , )
s

s phi f x VU x f e π τ +  (3.30) 
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When the scanning velocity is equal to the actual phase velocity of 165 m/s, the 

normalized amplitude along the scanning line is a constant and a maximum. 

a)  

b)  
Figure 3.2 (a) Phase-velocity and time-intercept (PIS) scanning scheme shown in x-t 

domain for harmonic 55 Hz component, with scanning phase velocity varied and  
scanning intercept time fixed; (b) Amplitude ( , )U x f  of harmonic components along the 

three trial scanning lines. 

For actual field test data, the normalized amplitude of Eq. (3.30) is then summed 

along the scanning line at the discrete receiver offsets (xn) to obtain the slant-stack 

summation. For the present theoretical example, the sum can be replaced with an integral, 

corresponding to an infinitesimal receiver spacing dx, giving the summed amplitude 
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1

2 ( / )( , ) ( , )
sN s ph

x i f x Vs
f ph s x

A V U x f e dxπ ττ + = ∫  
(3.31) 

where x is the offset, sτ  is the scanning intercept time, s
phV  is the scanning phase velocity, 

and the calculation is for a particular frequency component of the Fourier transform in 

Eq. (3.2). For actual field tests, Eq. (3.31) is replaced with the summation 

( )

1 1
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 (3.32) 

For instructional purposes, plotting the resulting summed normalized amplitudes versus 

the scanned intercept time ( sτ ) provides a new time-domain waveform, as shown in 

Figure 3.3. This plot allows the optimum scanning phase velocity to be identified as that 

which produces the largest waveform amplitude. For the present theoretical example, the 

optimum phase velocity is the actual value of 165 m/s. In practice, the optimum intercept 

time can be found by simply programming another loop over intercept time in Eq. (3.32) 

and searching for the maximum ( , )s
f ph sA V τ . It should be noted that the effect of sτ  on 

the summed amplitude in the above equation is similar to that of 1 / s
phx V   in Eq. (3.19). 

 
Figure 3.3 Waveforms of summed normalized amplitude ( , )s

f ph sA V τ  produced by 

varying the scanning intercept time sτ  for three scanning phase velocities s
phV . 
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3.3.5 Auto power spectral analysis 

The dispersion information needs to be extracted from the summed amplitude 

( , )s
f ph sA V τ , which varies with the scanning phase velocity and scanning intercept time. 

As shown conceptually in Figure 3.3, ( , )s
f ph sA V τ for different scanning velocities results 

in different waveforms, the amplitudes of which are dispersion-information 

measurements of the scanning velocities. The amplitude discrepancy among scanning 

velocities can be further magnified by taking a 1D Fourier transform of the amplitude 

waveforms followed by an auto power spectrum analysis. The first 1D Fourier transform 

converts Eq. (3.31) from the intercept-time domain to the frequency domain: 

2( , ) ( , ) i fs s
f ph f phF V f A V e dτπ τ

τ
τ

τ τ− =  ∫  (3.33) 

and the auto power spectrum analysis of Eq. (3.33) then provides the spectral value, 

*( , ) ( , ) ( , )s s s
f ph f ph f phS V f F V f F V fτ τ τ =    (3.34) 

where * denotes the complex conjugate. Figure 3.4 shows the three auto power spectra 

for the three scanning velocities of the present theoretical example. As expected, the auto 

power spectra peaks are at the examined frequency of 55 Hz (i.e., f fτ = ) for all of the 

scanning phase velocities, and the maximum spectral value occurs when the scanning 

velocity is equal to the actual phase velocity of the sinusoidal signal (165 m/s).  
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Figure 3.4 Auto power spectra (spectral value vs. frequency). 

The peak amplitudes for different scanning velocities in Figure 3.4 can be used to 

construct a plot of auto-power spectrum values vs. scanning velocities for the 

corresponding optimum intercept-times. For a harmonic signal at a certain frequency (f) 

obtained by the Fourier transform of Eq. (3.2), varying the phase velocity in Eq. (3.34) in 

the scanning range provides auto-power spectrum values which vary with s
phV ; 

,min ,max( ) max( ( , ) ( , )s s s s s
f ph f ph ph ph phS V S V f V V Vτ=   ),       ∈   (3.35) 

this auto power spectral analysis is useful to extract the peak information in Figure 3.3 in 

order to magnify the difference among scanning velocities and thus increases the contrast 

of dispersion images. The auto-power spectrum is then plotted as a function of s
phV  in the 

form of a 2-D slice dispersion image and then repeated for different frequencies (f) to 

obtain the complete 3-D dispersion image of the PIS analysis. It should be noted for 

conventional MASW analyses that a similar improvement in dispersion image quality can 

be obtained by plotting the auto-power spectrum (the square of the complex magnitude) 

of the summed amplitude in Eq. (3.16). This finding was an additional benefit enabled by 

the formulation of the PIS approach presented above.  
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3.3.6 Spectral ratio 

At each frequency of interest, all slowness values (or equivalently, phase 

velocities) of interest are scanned in Eq. (3.35) by first replacing Eq. (3.33) with a Fast 

Fourier Transform evaluated for the range 0 2 fτ< < . Then, the resulting summed 

spectral values can be normalized with respect to the maximum value as 

( )
( , )

max( ( ))

s
f phs

ph s
f ph

S V
R V f

S V
 =  (3.36) 

In the PIS method, the dispersion image is then constructed as a 3D or contour plot of R 

in Eq. (3.36) against the scanning phase velocities and the frequency of the Fourier 

transform of Eq.  (3.9).   

A slice of one such normalized dispersion image for a frequency of 55 Hz is 

shown in Figure 3.5 for the conventional MASW analysis and the new MASW-PIS 

method presented herein. Figure 3.5 shows a slice through a dispersion image after 

applying the phase-velocity scanning scheme to the synthetic 55 Hz sinusoidal signals in 

Figure 3.2a. As mentioned above, the synthetic signals are free from noise and near- or 

far-field effects. Despite this ideal situation, the dispersion imaging scheme results in 

many side lobes distributed throughout the phase-velocity scanning range using the 

conventional MASW analysis method (Figure 3.5). Similar phenomena can also be 

observed in Park et al. 2001a, Ryden et al. 2004, and Park 2012. The spectral side-lobe 

leakage phenomenon of Fourier transforms is a consequence of discretizing the frequency 

spectrum and the implied rectangular window, for which the Fourier transform is a sinc 

function with many side-lobes (e.g., see Bendat and Piersol 1996). The product of the 

signal and the window in the time-domain becomes a convolution of their respective 
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Fourier transforms in the frequency domain. Here, side-lobe leakage also occurs along 

the phase-velocity axis in Figure 3.5 due to discretization of the phase-velocity spectrum. 

The side lobes decrease the resolution of the main lobe which identifies the apparent 

dispersion trend, and in some instances, may be misidentified as higher and/or lower 

modes. As shown in the figure, the new MASW-PIS method significantly reduces the 

amplitudes of the sidelobes, thus improving the resolution of the main peak from which 

the phase velocity is determined for the given frequency. The comparison of two full 

dispersion images in Figures 3.6a and 3.6b demonstrates the MASW-PIS method can 

yield experimental dispersion images with much greater clarity than conventional MASW 

analysis due to drastically reduced side lobes. This is primarily a result of the power-

spectrum analysis step of the PIS method, and can therefore be easily applied to 

conventional MASW analyses to immediately improve the quality of dispersion images 

by plotting the square of the complex magnitude of Eq. (3.16). 

 

Figure 3.5 Dispersion image slices at 55 Hz using MASW method, and MASW-PIS 
method resulting in reduced side lobes. 
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Figure 3.6 Synthetic experimental dispersion images: a) using MASW and b) using 
MASW-PIS. 

3.4 Case Studies 

To examine the relative performance of the conventional MASW and new 

MASW-PIS analysis methods, data from two different field sites and a finite element 

simulation are used in this section. The raw data are from: (1) multichannel simulation 

with one-receiver (MSOR) testing at a soil site in Iowa (Lin and Ashlock 2011), 

(2) active-source MASW testing at the National Geotechnical Experimental Site (NGES) 

at Texas A&M University from the SASW benchmarking data set (GEC 2011, Tran and 

Hiltunen 2011), and (3) a finite element simulation of surface waves in a three-layer soil 

model using Abaqus 6.10-1. 

 

a)  

b)  
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3.4.1 MSOR Tests at East River Valley site 

A single 4.5 Hz vertical geophone and triggered 10 lb sledgehammer source 

impacting a 1 in. thick aluminum plate were used for multichannel simulation with one 

receiver (MSOR) tests at this site. A 4-channel LDS Photon II dynamic signal analyzer 

was used for data acquisition, with a sampling interval of 0.78125 msec and anti-aliasing 

filtering for a maximum frequency of 500 Hz. A 12 ft station separation over an offset 

range from 18–258 ft was utilized. Twenty impacts were recorded at each station for 

signal stacking. All stacked, normalized signals with filled positive amplitudes are 

assembled in Figure 3.7. A slice through the dispersion image at 12 Hz and the full 

experimental dispersion image are shown in Figures 3.8 and 3.9, respectively for both 

MASW and MASW-PIS analysis methods. The two methods yield similar dispersion 

images with consistent fundamental modes (Figures 3.9a and 3.9b). The slice through the 

dispersion image in Figure 3.8 as well as the images in Figure 3.9 exhibit significant 

reductions in aliasing and side lobe height for the new MASW-PIS method. 

 
Figure 3.7 Field data for MSOR tests at East River Valley site. 
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Figure 3.8 Slice of dispersion image at 12 Hz using MASW and MASW-PIS analyses 
for MSOR tests at East River Valley site. 

a)

 

b)

 
 

Figure 3.9 Experimental dispersion images: a) using MASW and b) using MASW-PIS 
for MSOR tests at East River Valley site. 

3.4.2 MASW tests at NGES 

For this analysis, one of the SASW benchmarking data sets from GEC (2011) was 

used, with receiver offsets from 98 to 220 ft and the impact point at 88 ft. The 

conventional multi-receiver MASW testing method was used with a total of sixty-two 

4.5-Hz vertical geophones, a sampling interval of 0.78125 msec, and a triggered 

sledgehammer. Geophones were placed along a straight-line with 10-ft source offset and 

2-ft spacing. The pre-trigger delay was about 10% of the 12.8-sec record time. A selected 

subset of the normalized signals with filled positive amplitudes are assembled in Figure 

3.10. A slice at 40 Hz and the experimental dispersion images obtained from this data 
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using the conventional MASW and new MASW-PIS methods are shown in Figures 3.11 

and 3.12. The relative performance of the two methods is similar to that shown for the 

MSOR tests in Figures 3.8 and 3.9; the MASW-PIS method significantly reduces side 

lobes and aliasing over the entire frequency range. 

 

Figure 3.10 Field data from MASW tests at NGES. 

 
Figure 3.11 Slice of dispersion image at 40 Hz using conventional MASW and  MASW-

PIS analysis methods for MASW tests at NGES. 
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a)  

b)  
Figure 3.12 Experimental dispersion and inversion analysis: a) using MASW and b) 

using MASW-PIS for MASW tests at NGES. 

3.4.3 Finite element simulation 

MASW surface wave testing on a three-layer soil model was simulated using the 

finite element method in Abaqus 6.10-1 (Lin and Ashlock 2014a). The soil structure and 

properties for this analysis are shown in Table 3.2.  

Table 3.2 Parameters of a layered soil model 
Layer # VS (m/s) Poisson’s ratio, ν Density, ρ (kg/m3) Layer thickness, h (m) 

1 150 0.30 1800 2 
2 200 0.30 1800 3 
3 400 0.30 1900 ∞ (half space) 

The conventional MASW and new MASW-PIS experimental dispersion analyses 

of the simulated surface waves provide the dispersion images shown in Figure 3.13. The 

first three modes of the theoretical dispersion curves were calculated using the transfer 
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matrix method for the soil model in Table 3.2, and are shown for reference as continuous 

curves in Figure 3.13.  

The results from this finite element simulation also demonstrate that the new 

MASW-PIS method produces dispersion images with significant reductions in side lobes 

and aliasing. It is important to note that the strong sidelobes shown in Figure 3.13a are 

not higher modes, as is clear from comparison to the theoretical dispersion curves shown. 

For similar dispersion images from field data cases, the strong side lobes may be 

incorrectly identified as apparent higher modes. The muted side lobes by the MASW-PIS 

method can therefore help to easily and correctly interpret experimental dispersion 

images, reducing misinterpretation of higher modes. 

a)  

b)  
Figure 3.13 Experimental dispersion images: a) using MASW and b) using MASW-

PIS. (Solid grey lines are the first three-modes of theoretical dispersion curves.) 
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3.5 Conclusions 

It was demonstrated in this chapter that dispersion images in the form of auto-

power spectral values calculated using the new MASW-PIS method, which employs 

phase-velocity and intercept-time scanning schemes, have greater resolution and reduced 

side lobes relative to the conventional MASW analysis method, which features dispersion 

images in the form of stacked amplitude values obtained by the phase-velocity scanning 

scheme. Through one theoretical example, two field case studies, and one finite element 

simulation, it was demonstrated that the MASW-PIS method can significantly reduce side 

lobes and aliasing using the auto-power spectrum analysis, which can help minimize the 

misidentification of apparent higher and/or lower modes. Additionally, increasing the 

sharpness of dispersion image contours using the new method can improve certainty and 

increase confidence when manually picking the maxima, which is a common step in 

routine MASW data analysis. The application of the intercept-time scanning technique 

can eliminate the assumption that the impact point is the generation point of the Rayleigh 

waves, and therefore eliminate the need for a complex high-accuracy trigger system. As a 

result, a simpler synchronized trigger system could be used, or the first receiver could be 

used as a trigger.  
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 SURFACE-WAVE TESTING OF SOIL SITES USING CHAPTER 4.

MULTICHANNEL SIMULATION WITH ONE RECEIVER 

4.1 Abstract 

This chapter includes studies of soil stiffness profiling using the multichannel 

simulation with one-receiver (MSOR) method. The MSOR method reverses the roles of 

source and receiver in the multi-channel analysis of surface wave (MASW) method, 

based on the reciprocity theorem of mechanics. MSOR was originally developed for 

pavement sites, which tend to have relatively uniform horizontally layered structures 

compared to soil sites. To examine the feasibility and accuracy of utilizing MSOR for 

soil sites, the finite element method (FEM) is first employed to simulate MSOR testing 

for three soil profiles containing (1) horizontal interfaces, (2) a vertical fault, and (3) a 

dipping interface. The effect of variations in the moving impact locations on the 

uncertainty and repeatability of the dispersion results is then analyzed. Real-world case 

studies are carried out to examine the equivalency of MSOR and MASW testing in terms 

of characterizing dispersion data of soil profiles. From the computational simulations and 

field case studies, MSOR is demonstrated to be equivalent to MASW testing for practical 

purposes. In addition, MSOR has the advantages of reduced instrumentation cost, 

improved portability, enhanced ability to measure multi-mode dispersion curves by 

utilizing borehole geophones, and the potential for improving efficiency of 3-D stiffness 

profiling. 

4.2  Introduction 

Geophysical surface wave methods have been widely utilized to infer stiffness 

profiles of layered media by employing dispersion characteristics of surface waves (e.g., 
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Nazarian 1984, Rix 1988, Park et al. 1999a, Xia et al. 1999, Louie 2001, Xia et al. 2003, 

Ryden 2004, Socco et al. 2010, Cox and Beekman 2011). Surface wave testing 

procedures for soil sites typically employ either the two-receiver spectral analysis of 

surface waves (SASW) method (e.g., Nazarian 1984, Stokoe et al. 1994), or a 

seismograph with an array of receivers in the multichannel analysis of surface waves 

(MASW) method (e.g., Park et al. 1998, 1999a). In the past few decades, the MASW 

method has gained increasing popularly for seismic profiling of soil sites (i.e., Park et al. 

1999a, Xia et al. 1999, Louie 2001, Xia et al. 2004, Zywicki and Rix 2005, Song et al. 

2007, Vanneste et al. 2011). 

In this chapter, the feasibility and validity of using the MSOR method for soil 

sites is investigated computationally and experimentally. Successful application of 

MSOR testing for geophysical profiling of soils will expand the usefulness of surface 

methods for various scenarios, such as organizations and developing countries with 

budgets limited to only a few geophones and data acquisition systems having only a few 

channels, and increased portability for remote test sites with limited accessibility or 

emergency response after earthquakes. 

The reciprocity principle has been widely used for interchanging source and 

receiver locations without affecting recorded seismic signals (e.g., Dahlen and Tromp 

1998, Ikelle and Amundsen 2005, Burger et al. 2006). Arntsen and Carcione (2000) 

numerically demonstrated the feasibility of applying reciprocity with distributed sources 

instead of point sources. Wapenaar (1998) reported that the reciprocity principle is 

satisfactory with different characteristics of source and receiver, provided that the 

amplitude of the signal is not critical. Traditional active surface wave methods extract 
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frequency-related dispersion information from multichannel field data by employing an 

array of point receivers and a distributed active source. For near-surface profiling, the 

point receivers typically consist of 24 or 48 geophones coupled to soil by ground spikes, 

with the source consisting of a sledgehammer striking a 15-cm by 15-cm rectangular 

aluminum plate. If the multiple receivers with a single impact location are exchanged for 

multiple impact locations with a single receiver, the dispersion images of two testing 

procedures should theoretically be equivalent based on the reciprocity principle. Whether 

the principle of reciprocity holds in practice for actual soil profiles and testing conditions 

including the presence of external noise is examined in this chapter. 

The single-receiver MSOR method has been successfully applied to 

nondestructive testing of pavements (e.g., Ryden et al. 2001, 2002a, 2006, Park et al. 

2002, Olson and Miller 2010, Lin and Ashlock 2014b) and soils (e.g., Lin and Ashlock 

2011, 2014a). It has several advantages compared to the multi-receiver methods such as 

MASW, including: (1) greatly reduced instrumentation costs, since only one sensor and a 

two-channel data acquisition system are required; (2) increased portability, as a 

multichannel seismograph with external battery source and string of geophones are not 

required; (3) enabling minimally invasive measurement of higher modes using a single 

borehole for downhole receiver measurements with moving impacts at the surface (Lin 

and Ashlock 2014a, Ashlock and Lin 2014); (4) the potential to be faster than MASW if a 

movable servo-electric impact source is used, as the set-up time for a string of geophones 

and cables is eliminated; and (5) ease in obtaining 3-D stiffness profiles, as the source can 

readily be moved along different horizontal lines, compared to reinstalling an entire 
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string of geophones multiple times to cover the entire testing area for MASW, as shown 

in Figure 6.4 in Chapter 6.  

The MSOR method has two primary requirements: (1) repeatable impacts that can 

generate waves with consistent energy, timing, and triggering (Park et al. 2002) and (2) 

accurate and consistent impact locations. To exclude negative effects caused by these 

inconsistencies, an FEM simulation was first employed to study the reciprocity of 

dispersion images for MASW and MSOR methods for three types of site structures under 

ideal testing conditions. The cross-correlation function was then used to statistically 

analyze the distribution of sampling time-lags among stacking signals, which can arise 

from the impact inconsistencies mentioned above. To examine the potential errors caused 

by these inconsistencies, a uniform distribution of lags was employed to simulate the 

effect of variations in impact locations on the accuracy of dispersion data. One real-world 

case study was performed using MASW and MSOR at the same site to demonstrate their 

equivalence in terms of the reciprocal dispersion data. 

4.3  FEM Simulations of MASW and MSOR at Soil Sites 

To assess the feasibility of applying the MSOR testing procedure to various soil 

sites, the finite element method was utilized to simulate the MSOR method with moving 

impact locations and fixed geophones at the ground surface. The soil models defined in 

Tables 4.1, 4.2, and 4.3 were simulated in Abaqus 6.10-1, using infinite elements on the 

two lateral boundaries. A transient impact was applied to simulate the dynamic loading of 

a sledge hammer on the free surface at selected source locations, and the vertical velocity 

was recorded at the geophone locations. The velocity records were assembled to form 

multichannel records, from which the dispersion images were calculated using the Phase-
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velocity and Intercept-time (PIS) Scanning procedure detailed in Chapter 3. The MASW 

test procedure was then simulated for the same models by reversing the geophone and 

source locations. Finally, dispersion images of MASW velocity data for each soil model 

were calculated and compared against their counterparts from MSOR data. 

4.3.1 Case 1: Site with three horizontal layers 

Case 1 consisted of a site with uniform horizontal layers, as assumed in the 

theoretical matrix method formulations presented in Chapter 2. The MSOR moving 

impacts were applied successively to the 24 source locations shown in Figure 4.1, which 

have a spacing of 1 m and a first offset of 2 m from the single geophone. Figure 4.2 

shows that the dispersion curves of the MSOR and MASW simulations are in good 

agreement with each other, as well as their theoretical counterpart obtained via the 

transfer matrix method. Thus the equivalency of the MASW and MSOR testing 

approaches is demonstrated for this case of uniform horizontal layers and idealized 

testing conditions without impact inconsistencies or external noise. Slight variations in 

the FEM dispersion curves are apparent in the figure. It can be shown that simulations 

using the stiffness matrix method will produce much smoother curves, similar to that 

from the transfer matrix method in Figure 4.2. Therefore, the slight fluctuations in the 

FEM dispersion curves are likely due to numerical issues such as discretization error and 

modeling error for the finite boundaries. 

Table 4.1 Properties of layered soil model for Case 1. 

Layer # VS (m/s) Poisson’s ratio, ν Density, ρ (kg/m3) Layer thickness, h (m) 
1 150 0.30 1800 2 
2 200 0.30 1800 3 
3 400 0.30 1900 ∞ (half space) 
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Figure 4.1 FEM simulation of wavefield propagation in layered soil model of Table 4.1 
for MSOR test. (Vertical displacements exaggerated. Contour plot is snapshot of von 

Mises stress.) 

 

 

Figure 4.2 Experimental dispersion curves from FEM simulations of MASW and MSOR 
tests on horizontally layered site. (Theoretical curve from transfer matrix method). 

4.3.2 Case 2: Site with a vertical fault 

To further assess the feasibility of the MSOR method for more complex soil sites 

than can be handled by the matrix methods detailed in Chapter 2, the FEM was used to 

simulate the MSOR and MASW testing on a site with a vertical fault. The material 

properties of the soil model are given in Table 4.2. Impacts were applied successively 

from left to right at the 47 locations shown in Figure 4.3. The impact stations have a 

spacing of 0.5 m and a first offset of 2 m from the geophone. The 1st to 24th impacts were 

applied to the left of the fault, and are referred to as MSOR impact set I1. The 24th to 47th 
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impacts were applied to the right of the fault, and comprise MSOR impact set I2. The 

MSOR data for the I1 and I2 impact sets were assembled to form multichannel records 

and dispersion images, the peaks of which are plotted as hollow circles in Figures 4.4a 

and 4.4b.  

Table 4.2 Properties of layered soil model with vertical fault for Case 2. 
Layer # VS (m/s) Poisson’s ratio, ν Density, ρ (kg/m3) Layer thickness, h (m) 

1 150 0.30 1800 4 (left), 2 (right) 
2 400 0.30 1900 ∞ (half space) 

 

Figure 4.3 Simulation of MSOR testing at soil site with a vertical fault. (Vertical 
displacements exaggerated. Contour plot is snapshot of von Mises stress.) 

The geophone and impact locations used in the MSOR simulation were then 

switched to perform an MASW simulation on the same model with one impact and 47 

geophones. The 1st to 24th geophones and the 24th to 47th geophones comprise the first 

MASW geophone set (G1) and the second MASW geophone set (G2), respectively. The 

MASW data for geophone sets G1 and G2 were assembled to form two sets of 

multichannel records and dispersion images, the peaks of which are also plotted in 

Figures 4.4a and 4.4b as solid dots. Also shown in the figures are the theoretical 

dispersion curves evaluated by the matrix method for the vertical soil profiles at the 

centers of the corresponding geophone/impact spreads. 
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a)  

b)  
Figure 4.4 Experimental dispersion curves for soil site with vertical fault: a) simulated 

MASW of G1 and MSOR of I1, b) simulated MASW of G2 and MSOR of I2. 
(Theoretical curves from transfer matrix method at center of testing spreads). 

Comparison of Figures 4.4a and 4.4b reveals that the experimental dispersion 

curves obtained using MSOR and MASW are in excellent agreement. This demonstrates 

that the two methods are equivalent for practical purposes, even for this more 

complicated case of a soil structure containing a fault. As mentioned in Chapter 3, the 

theoretical matrix methods required the assumption of perfectly uniform and horizontal 

layers, and are therefore unable to handle the faulted structure shown in Figure 4.3. This 

explains the good agreement between FEM and transfer matrix results in the above figure 

for lines I1/G1 located before the fault, and the discrepancies in the low-frequency range 

for lines I2/G2 which are located after the fault.  
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4.3.3 Case 3: Site with dipping interface 

To further study more general site conditions than the matrix methods can handle, 

FEM simulations were performed for MSOR and MASW tests on a site with a dipping 

interface (Table 4.3). Moving impacts were applied successively to 24 locations having a 

spacing of 1 m and a first offset of 2 m from the geophone (Figure 4.5). As shown in the 

figure, two geophones were placed symmetrically on the left and right sides of the 

centerline. The MSOR data of the left and right geophones for the 24 impacts were 

assembled to form two sets of multichannel records, from which the two MSOR 

dispersion curves in Figure 4.6 were calculated. The geophone and impact locations were 

then switched to obtain the two MASW dispersion curves shown in the figure. The four 

simulated experimental dispersion curves from the forward and reverse MSOR and 

MASW tests are all in excellent agreement with the theoretical counterpart at the 

centerline of the profile. This agreement also validates the middle-of-receiver-spread 

assumption commonly assumed for the MASW method (e.g., Luo et al. 2009). 

Table 4.3 Properties of soil site with dipping layer for Case 3. 
Layer 

# VS (m/s) Poisson’s ratio, ν Density, ρ 
(kg/m3) Layer thickness, h (m) 

1 150 0.30 1800 7 (left), 4.5 (middle), 2 (right) 
2 400 0.30 1900 ∞ (half space) 
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Figure 4.5 Simulation of MSOR testing at soil site with dipping interface. (Vertical 

displacements exaggerated. Contour plot is snapshot of von Mises stress.). 

 

   

Figure 4.6 Experimental dispersion curves for FEM simulations of MASW and MSOR 
testing at soil site with dipping layer. (Theoretical curves from transfer matrix method at 

centerline). 

 
From the preceding three FEM simulations, one can conclude the following: 

(1) in the absence of experimental error, the MSOR is theoretically equivalent to the 

MASW method in terms of experimental dispersion curves for soil sites, and (2) the 

reciprocity principle holds for surface Rayleigh waves in terms of the reciprocal 

dispersion curves, which depend only upon phase information but are independent of 

amplitude (i.e., attenuation). 

2 m 
Geophone 

  

θ=6°  

 Impacts 

  
Geophone 

  
    

7 m 



www.manaraa.com

114 

4.4 Effect of Inconsistencies in MSOR Impact Locations 

In the above numerical simulations, the idealized impacts are free from sources of 

experimental error and are thus exactly repeatable. However, due to slight variations in 

impact location, triggering, energy, and external noise, impacts in actual physical tests are 

not completely repeatable. Therefore, signals used for the common practice of stacking 

(i.e., summing) to reduce effects of random errors are not completely repeatable and 

exhibit variations in sampling time-lags, amplitude, and frequency content. As will be 

discussed in a later chapter, the consistency of impacts is critical for success of MSOR 

testing in pavements, because of the high frequencies (several kilohertz), high phase 

velocities, and small receiver spreads used. On the other hand, MSOR testing for soils 

typically employs frequencies less than 100 Hz, and is therefore much less sensitive to 

the repeatability of impacts, because low-frequency wave components are least affected 

by the inconsistencies (Park et al. 2002).  

In this section, a quantitative study on the repeatability of impacts for MSOR soil 

testing was conducted using the cross-correlation function to quantify the number of 

sample lags between stacking signals from repeated impacts. Relative errors in dispersion 

curves were then examined to quantify their variability due to the imperfect repeatability 

of impacts. 

4.4.1 Lags of stacking signals 

The cross-correlation function is widely used to quantify the dependence of one 

signal on another (e.g., Bendat and Piersol 1986, Taghizadeh 2000): 

2 1 2 10

1( ) lim ( ) ( )
T

x x T
R x t x t dt

T→∞
= +∫τ τ , (4.1) 
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where x1 and x2 are two signals, and T is the observation time. For discretely sampled 

signals, Eq. (4.1) is defined as: 

2 1 2 1
1

1( ) ( ) ( )
N m

x x
n

R m x n x n m
N

−

=

= +∑ , (4.2) 

where m=0, 1, 2, 3, …, N are sample lags (time shifts) and N is the number of discrete 

sample points. If x1 and x2 are identical, the cross-correlation will have a maximum at lag 

m=0. If x2 is the same signal as x1 with a shift of m lags, the cross-correlation will have a 

maximum at lag m. Thus, the cross-correlation function can quantify the variability of 

repeated impacts if they are of similar shape, in terms of time-shifts quantified by lags 

between stacking signals. If the impact and trigger are exactly repeatable, the geophone 

response signals will be identical with a maximum cross-correlation at lag m=0. In 

reality, the signals for stacking will exhibit variations in time breaks and amplitudes, as 

shown in Figure 4.7 for field data from 10 sledgehammer impacts on soil at 25.6 m 

(84 ft) from a geophone. For the field tests, 10 stacking signals were performed at each of 

12 different impact stations ranging from 3.66 m (12 ft) to 43.89 m (144 ft) offset from 

the geophone, with 3.66 m (12 ft) station separations. More details on the tests can be 

found in Lin and Ashlock (2014a). 

  

Figure 4.7 Ten geophone signals for stacking due to sledgehammer impacts on soil 
surface 25.6 m away in MSOR tests. 
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Figure 4.8  Cross-correlation between the first and all other signals in Figure 4.7. 

The cross-correlation function between the first impact signal (x1) in Figure 4.7 

and all others (x2) was calculated using Eq. (4.2), giving the results shown in Figure 4.8. 

The maximum coefficient of cross-correlation as well as the corresponding lags can be 

found from the peaks in Figure 4.8. The lags between the first stacking signal and the 

other nine are then plotted versus impact number in Figure 4.9. A positive or negative lag 

means the corresponding impact occurs later or earlier, respectively, than the first one. 

The signals from the 2nd, 3rd, 6th, and 9th impacts all have lag values of +4 with respect to 

the first signal, and are therefore considered to be the most repeatable signals. 

  

Figure 4.9 Lags between first signal and 9 others in Figure 4.8. 
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The cross-correlation analysis was then repeated using one of the most repeatable 

signals as x1 for 10 signals at each of 12 impact stations with offsets ranging from 3.66 m 

(12 ft) to 43.89 m (144 ft), giving a total of 120 lags. All 120 lags are shown in the 

distribution in Figure 4.10, indicating that about 50% of the signals have zero lag and the 

maximum lag is around 15 samples, or a time of 15 samples × 0.78125 msec/sample = 

11.7 msec. To examine the worst-case scenario for the influence of the sampling lags on 

the experimental dispersion image, the zero-lag signals were ignored, and a uniform 

distribution, ( 15,15)U −  was used to simulate the effect of inconsistent impacts by 

perturbing a set of MASW data.  

 
Figure 4.10 Frequency distribution of 120 lags from 10 stacking signals at each of 

12 impact stations in MSOR field tests of soil site. 

4.4.2 Effect of inconsistent impacts on dispersion curves 

The set of MASW data shown in Figure 4.11 (which has zero lags, since all traces 

are for a common impact) was used to form synthetic MSOR data by perturbing each 

trace by a random number of lags according to the uniform probability distributions 

( , )U n n− , with n ranging from 1 to 15. The dispersion curves obtained as maxima of the 

dispersion images of the synthetic MSOR data are shown in Figure 4.12a. The curves are 

shown with and without stacking applied, and also compared against the dispersion curve 

of the original un-perturbed MASW data. The average errors of the simulated MSOR 
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dispersion curves relative to the MASW dispersion curve are calculated by Eq. (4.3) and 

shown in Figure 4.12b for n ranging from 1 to 15.  

MSOR MASW
, ,

MASW
=1 ,

-1Average error =
N

ph i ph i

i ph i

V V
N V

  ∑  (4.3) 

where MSOR
,ph iV  and MASW

,ph iV are phase velocities at the ith frequency from the dispersion 

curves with MSOR and MASW methods, respectively, and N is the total number of 

frequency points. As shown in these figures, the simulated MSOR dispersion curves, 

even with the most unfavorable distribution of sampling lags, are in good agreement with 

MASW, especially after stacking. The RMS error is less than 6% for the maximum 

distribution width of 15 samples, and drops well below 1% if stacking is used. From this 

study, one can conclude that the inconsistency of impacts in MSOR testing in the form of 

inconsistent break times, as might be caused by an inconsistent hammer trigger or slight 

variations in impact locations, does not appreciably affect experimental dispersion 

curves. However, the above stochastic approach of perturbing MASW data by uniform 

probability distributions of sampling lags does not account for other types of real impact 

inconsistencies, such as differences in environmental noise, impact energy, or frequency 

content. To account for these variables, a direct comparison between MSOR tests with 

stacking and MASW tests at the same site is presented in the next section. 

 
Figure 4.11 Velocity traces from MASW test with 24 receiver offsets. 
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a)  b)  
Figure 4.12 a) Dispersion curves; b) Average error. 

4.5 Field Case Studies of MSOR Testing for Soil Sites 

For a direct comparison of MSOR and MASW tests at the same site, field tests 

were conducted at the East River Valley recreational site in Ames, Iowa (Figure 4.13a). 

Twenty-four 4.5 Hz vertical geophones were coupled to the soil surface using ground 

spikes. A triggered 10 lb sledgehammer source was used to generate Rayleigh waves by 

impacting an aluminum plate resting on the ground surface. A Geode 24-channel 

seismograph from Geometrics Inc. was utilized for data acquisition, with a sampling 

interval of 0.5 msec. A 2 m station separation was used over an offset range from 7 to 

53 m, and 10 impacts were performed at an impact offset of 7 m from the first geophone 

for MASW signal stacking. Equivalent MSOR tests were then performed using the 

reciprocity principle, by placing the first geophone at the previous MASW impact 

location and performing 10 stacking impacts at each of the previous MASW receiver 

locations (Figure 4.13b). Figures 4.14a and 4.14b show the velocity traces of MASW and 

MSOR tests in the space-time (x-t) domain, and the corresponding FFT amplitudes from 

7 to 18 Hz. The comparison indicates that the general agreement between MASW and 

MSOR in the x-t domain increases as the impact offset increases, and this fact is reflected 

in the x-f domain by FFT spectra that become closer with increasing offset. Figures 4.14c 
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and 4.14d show the dispersion images of MASW and MSOR, which are qualitatively in 

good agreement. The MSOR tests show slighty more low-frequency energy between 7 

and 9 Hz. This is likely a result of many students moving around during the duration of 

MSOR testing which required 240 impacts, while the MASW test was quicker with only 

10 impacts. The relative error of dispersion images, as shown in Figure 4.14e, decreases 

as the frequency increases; the average error is about six percent. The comparison of 

MASW and MSOR data in Figure 4.14 indicates that MSOR can detect similar dispersion 

data as MASW.  

a)  

b)  
Figure 4.13 Field testing: (a) MASW and (b) MSOR (only data from the first geophone 

is used). 
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a)  

 

b)  

 
c)  

 

d)  

 

e)  

Figure 4.14 a) MASW and MSOR field data, b) FFT amplitude, c) Experimental 
dispersion image of MASW data (white circles are the maxima.), d) Experimental 

dispersion image of MSOR data (white circles are the maxima of MASW, white dots are 
the maxima of MSOR), e) error of MSOR dispersion image peaks relative to MASW. 
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4.6 Conclusions 

The numerical simulations of MSOR tests and inconsistent impacts, and field tests 

presented herein demonstrate the feasibility of using the moving-source one-receiver 

method as an alternative surface wave testing procedure at soil sites. To characterize 

dispersion data, it was demonstrated that MSOR is practically equivalent to MASW 

testing if a consistent impact can be ensured. Consistent impacts require a repeatable 

trigger system and minimal variation of the impact locations. Using a single geophone 

and a two-channel dynamic signal analyzer powered by a USB cable from a laptop, the 

MSOR method is highly portable and can significantly reduce instrumentation cost. Thus, 

MSOR may be ideal for site investigation in remote sites and for post-earthquake 

characterization immediately after earthquakes before ground conditions change. 
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 SURFACE WAVE TESTING OF PAVEMENTS CHAPTER 5.

5.1 Abstract 

This chapter presents a computational and experimental study on seismic stiffness 

profiling of pavements using the multi-channel analysis of surface waves (MASW) and 

multi-channel simulation with one receiver (MSOR) testing procedures. Development of 

a new custom-programmed data acquisition system for MASW and MSOR testing using 

MATLAB software and National Instruments hardware are detailed. Effects of different 

receiver coupling methods on the test results are examined. The cross-correlation 

function is employed to statistically quantify the repeatability of impacts, which is critical 

for MSOR tests in which multi-channel records are simulated by performing multiple 

impacts over a range of incremental offsets from a single fixed receiver. Experimental 

dispersion data from MASW and MSOR tests performed at the same site with the same 

testing system are compared, and MASW is found to enable measurement of dispersion 

data to much higher frequencies than MSOR. Inversion results from MASW and MSOR 

data at the same site are compared, and it is found that MASW is able to provide 

measurements of the stiffness of the surface layer with reduced variability. 

5.2 Introduction 

Surface wave testing of pavements can be traced back to the continuous surface 

wave (CSW) method developed by Van der Poel (1951) and further advanced by 

Heukelom and Foster (1960), Jones (1955, 1958, and 1962) and Vidale (1964). After the 

popularization of the FFT in the 1960s, the CSW testing procedure evolved into the 

widely used SASW method developed by Heisey et al. (1982), Nazarian (1984), Rix 

(1988), and Stokoe et al. (1994).  Following the success and wide usage of MASW in 
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near-surface stiffness profiling of soils (e.g., Park et al. 1999a), the method was also 

applied to pavements using multiple geophones by Park et al. (2001b), and later using 

multiple accelerometers by Tertre et al. (2010). To reduce the cost and inconvenience of 

coupling multiple receivers to pavement in MASW, the MSOR method was developed 

and applied to pavement stiffness profiling by Ryden et al. (2001), Ryden et al. (2002a, 

2002b, 2006), Park et al. (2002), Olson and Miller (2010), and Lin and Ashlock (2011). 

In MSOR, synthetic multichannel records may be created by applying multiple impacts at 

a fixed source location while a single receiver is incrementally moved out to cover a 

range of offsets. Alternatively, the source and receiver in MSOR are more commonly 

reversed according to the reciprocity theorem of mechanics, such that the receiver is fixed 

while the impact location is moved out. 

Due to the decreasing velocity (stiffness) of pavement layers with depth, phase 

velocity spectra from surface wave tests on pavements primarily show an increase in 

phase velocity with frequency. However, wave propagation in pavement layers is very 

complex. As detailed in Ryden et al. (2006), experimental phase velocity spectra actually 

consist of several branches that can be approximated as multiple modes of anti-symmetric 

and symmetric Lamb waves for a free plate corresponding to the material properties of 

the stiff surface layer. The correspondence to Lamb waves is approximate, as the surface 

layer is not truly free, but interacts with the underlying base and subgrade layers in the 

low-frequency regime to create partial branches of leaky quasi-Lamb waves. However, at 

high frequencies (typically above 10 kHz), the experimental phase velocities approach 

those of the fundamental anti-symmetric (A0) and symmetric (S0) modes of dispersive 

Lamb waves, which themselves asymptotically approach the surface layer’s Rayleigh 
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wave velocity. To obtain accurate properties of the base and subgrade layers, inversion of 

the phase velocity dispersion data would require matching of the low-frequency branches 

generated by interaction of leaky quasi-Lamb waves in these layers. Alternatively, if only 

the properties (E-modulus and thickness) of the stiff top asphalt layer are desired, 

inversion can be avoided by using a simplified analysis in which experimental phase 

velocities are matched to fundamental anti-symmetric (A0) mode of Lamb waves in a 

free plate (as well as segments of the S0 mode, if detected), as described by Ryden et al. 

(2004, 2006).  

Whether using a multi-layer inversion or the free-plate Lamb wave 

approximation, resolution of the top pavement layer properties requires accurate 

experimental measurement of the phase velocity spectrum at high frequencies. A high-

resolution testing setup and delicate operation are required due to the high wave speeds, 

short wavelengths, and small motions involved. To reliably measure high-frequency 

dispersion characteristics, the MSOR method requires a repeatable impact source that can 

generate waves with consistent timing and triggering (Park et al. 2002), with minimal 

deviation from the intended impact locations. In the author’s experience, the MASW 

method can provide more reliable measurement of high-frequency components owing to 

the fixed receiver locations and less-stringent requirement on impact repeatability. The 

primary drawbacks of MASW testing for pavements are the costs of multiple 

accelerometers and a multi-channel signal analyzer, and the time required for coupling 

and decoupling of multiple accelerometers. 

To examine the performance of MSOR and MASW methods in acquiring high-

frequency dispersion data, a new data acquisition system and program was developed in 
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this study using National Instruments hardware and MATLAB software, with PCB 

accelerometers used as receivers and triggers. The data acquisition system and program 

are described in the following section. The repeatability of impacts in experimental 

MSOR data is then quantified using the cross-correlation function. The inconsistency of 

impacts is modeled using a normal distribution of inconsistent time breaks in terms of 

their sampling time-lags. Perturbations to experimental MSOR and MASW data in the 

form of normal time-lag distributions are compared in terms of their effects on the phase-

velocity spectra. A real-world case study is carried out with both MSOR and MASW 

tests on the same pavement to compare dispersion data and inverted shear-wave 

velocities of the surface layer from the two testing methods. 

5.3 Surface Wave Testing Systems and Experimental Issues 

The MASW testing system used in this study consists of nine PCB accelerometers 

(one model 621B51, six 353B33, and two 356B08), an impact hammer with one of the 

accelerometers mounted as a trigger, and a multichannel signal analyzer assembled from 

National Instruments (NI) hardware, as shown schematically in Figure 5.1a. The signal 

analyzer is comprised of an NI cDAQ-9172 USB chassis and three NI 9234 4-Channel, 

24-Bit analog input modules having a maximum simultaneous sampling rate of 51.2 kHz. 

A 12-volt deep-cycle marine battery and pure sine-wave inverter were used to power the 

chassis in field tests. The MSOR testing equipment consists of the same impact hammer 

with accelerometer trigger, a single PCB 621B51 high-frequency accelerometer as a 

receiver, and a single NI 9234 input module in a USB-powered cDAQ-9171 single-slot 

chassis, shown schematically in Figure 5.1b. The NI hardware for the MSOR and MASW 

systems are also shown in Figure 5.2. 
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a) 

 

b) 

 

Figure 5.1 Schematic of setup for a) MASW and b) MSOR tests (after Ryden et al. 
2002b). 

a) 

 

b) 

 

Figure 5.2 a) NI 9234 input module in a USB-powered cDAQ-9171 single-slot chassis; 
b) NI 9234 4-Channel input module and NI cDAQ-9172 USB chassis (from ni.com). 

A short-duration transient impact over a small contact area has been widely 

employed to generate high frequency signals using rounded head ball-peen hammers 

(Ryden et al. 2001, 2002b, 2004, Park et al. 2001b, 2002, Nazarian 1984) or 8-mm 

diameter steel balls (Alzate-diaz and Popvics 2009). The mass of hammers used in the 

literature varies from 0.22 kg (8 oz) to 0.5 kg (18 oz) (Ryden et al. 2001, 2002b, 2004, 

Park et al. 2001b, 2002). As the interest of this chapter is on the surface asphalt layer, an 

8-oz hammer was adopted to generate high frequency (>10 kHz) surface waves with 

wavelengths comparable to the thickness of surface layer, ranging from 4 to 6 inches. 

A triggering system consisting of an accelerometer attached to a hammer was 

recommended by Ryden et al. (2001). In the present study, it was confirmed that such a 
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triggering system was more reliable than an off-the-shelf electric contact closure hammer 

switch from Geometrics, which was designed for much larger sledgehammer sources. 

Since the NI 9234 input modules do not feature a hardware analog triggering capability, a 

software trigger was programmed in MATLAB using a circular 3-slot buffer to 

constantly acquire sample records and extract those containing a trigger event (Figure 

5.3). When the signal of the accelerometer mounted on the hammer meets the prescribed 

trigger level, the triggered records are extracted from the circular buffer with a user-

selected number of pre-trigger samples (Figure 5.4). Zero padding in the first and third 

buffer slots of the trigger channel was used to prevent possible double triggering. The 

PCB accelerometers were used as high frequency receivers for measurements up to 25 

kHz. The frequency range of accelerometers for surface wave measurement can exceed 

their natural resonance frequencies, because the critical information for the experimental 

dispersion data is not the magnitude of waves but their relative phase at different offsets 

(Ryden et al. 2002b).  

a)  

b)  

Figure 5.3 (a) circular 3-slot buffer, (b) unwrapped 3-slot buffer. Dashed lines show the 
possible distribution of signals of interest. 
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Figure 5.4 Trigger and receiver signals in the MATLAB data acquisition program 

(double trigger event shown). 

A critical issue in surface wave testing of pavements is to ensure a proper 

coupling of the accelerometers to the pavement surface to achieve a high frequency 

bandwidth. Several coupling methods were examined in the present study, including 

plumber’s putty, hot glue, superglue, epoxy, and a synthetic waterproof high temperature 

polymer grease with a working range of -20 to 500 °F (Green Grease brand).  Sticky 

grease was reported by Ryden et al. (2001) to provide an appropriate coupling that can 

ensure the necessary frequency bandwidth for pavement testing. In the present study, 

plumber’s putty was found to perform comparable to sticky grease, with the added 

convenience of easy coupling and decoupling. For MASW, a putty strip was formed 

around the accelerometers to hold them together, thus improving the efficiency of 

installing the accelerometers with the selected spacing. Coupling of the putty strip with 
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the pavement surface was improved by adding a thin layer of the polymer grease 

underneath.  

The resonant frequency of the accelerometers is another important consideration 

for high frequency surface wave testing of pavements. Ryden et al. (2001) examined 

models having resonant frequencies of 50 kHz and 34 kHz, and reported that the 34 kHz 

model had the optimum combination of frequency response and sensitivity. The 

accelerometers used in this study have comparable resonant frequencies of 35 kHz 

(model 621B51), ≥22 kHz (model 353B33), and ≥20 kHz (model 356B08). 

5.4 DAQ Program 

A data acquisition and analysis program for MSOR surface wave testing of soils 

and pavements was developed using MATLAB software. A screen capture of the MASW 

program is shown in Figure 5.5. The left-most column is the control panel including 

pushbuttons, and parameter inputs for the experimental dispersion analysis. The middle 

three columns contain drop-down dialog boxes for selecting the trigger and receiver 

parameters, and additional parameter inputs for data acquisition. The user can review the 

signals after each triggered impact with the option to undo and redo. The same DAQ 

system is used for MSOR testing using only one active receiver. 
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Figure 5.5 DAQ system program window for MASW and MSOR testing. 

5.5 Consistency of Impacts 

As discussed above, the consistency of impacts is critical for the success of 

MSOR testing in pavements due to the high frequencies involved, on the order of several 

kilohertz (Park et al., 2002). Since the accuracy of the digital trigger can be no better than 

one sample interval (Ryden et al. 2002b), and small variations in impact location are 

unavoidable when using a manual hammer, it is of interest to statistically quantify the 

effects of such variations on dispersion data. For this purpose, the cross-correlation 

function was employed to quantify the sample lags between stacked signals caused by 

slight variations in impact location, and the root-mean-square (RMS) difference used to 

measure the discrepancy of the resulting dispersion curves. It should be noted that other 

methods can also be used to minimize the variations in impact location, such as using a 

steel spike to couple the hammer to the pavement surface (e.g., Ryden et al. 2004), or 

correcting the slight differences in time breaks to force all first arrivals to have a 
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consistent velocity (Park et al. 2002). Although these two latter methods may improve 

lost resolution in MSOR tests due to slight variations in impact location, they do not 

address differences in the energy of each blow, whereas all sensors in MASW measure 

the motion of a common impact. 

5.5.1  Lags of stacking signals 

The cross-correlation function (e.g., Bendat and Piersol 1986, Taghizadeh 2000) 

was employed to measure the slight differences among signals used for stacking from 

repeated impacts at the same offset distance: 

2 1 2 1
1

1( ) ( ) ( )
N m

x x
n

R m x n x n m
N

−

=

= +∑      (5.1) 

where x1 and x2 are two discrete signals, m=0, 1, 2, 3, …, N are sample lags (time 

shifts), and N is the number of discrete sample points. If x1 and x2 are identical, the cross-

correlation will have a maximum at lag m=0. If x2 is the same signal as x1 with a shift of 

m lags, the cross-correlation will have a maximum at lag m. Thus the cross-correlation 

function can quantify the inconsistency of repeated impacts in terms of lags of stacking 

signals. If the impact and trigger are exactly repeatable, the accelerometer response 

signals will be exactly the same with a maximum cross-correlation at lag m=0. In reality, 

the signals for stacking will exhibit variations in time breaks and amplitudes, as shown in 

Figure 5.6a for signals from 10 repeated impacts on an asphalt pavement surface at an 

offset of 0.2 m from the accelerometer, with a sampling interval of 0.02 ms (sample rate 

of 50 kHz). Figure 5.6b shows the cross-correlation between the first impact signal (x1) 

and all others (x2). The sample lags for each of the 10 signals can be found as the 

abscissas of the maximum peaks in Figure 5.6b. 
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a)

 

b)

 

Figure 5.6 a) Ten signals for stacking obtained by hammer impacts 0.2 m away from 
accelerometer on pavement surface; b) Cross-correlation of the ten signals. 

Figure 5.7a shows the lags and the corresponding lag times between the x1 signal 

and the remaining nine x2 signals. Having the same zero lag with respect to the first 

signal, the four signals from the 2nd, 4th, 6th, and 9th impacts are the most repeatable 

relative to 1st signal. Similar cross-correlation analyses were conducted for 10 signals at 

each of 9 impact-stations (a total of 90 signals), taking the most repeatable signal at each 

station as x1. The resulting statistical frequency distribution all of 90 lags is shown in 

Figure 5.7b. Approximately 70 of the 90 signals have zero lag. The one signal having a 

lag of 10 samples was due to an inappropriate impact, which could be remedied by using 

the undo button in the DAQ program and repeating the impact. A normal probability 

distribution, N(0.189,2.222), can be used to describe the distribution of lags, as shown by 

the solid curve in Figure 5.7b. 
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a)

 

b)

 

Figure 5.7 a) Lags between signals from 10 impacts at one impact station; b) statistical 
frequency distribution of 90 lags from 9 different impact stations. 

5.5.2  Effect of inconsistent impacts on dispersion curves 

To study the effect of inconsistent impacts on experimental dispersion data, the 

set of 9-channel MASW pavement data shown in Figure 5.8a was recorded for a single 

impact, then perturbed by injecting sampling lags with the normal distribution shown in 

Figure 5.7b to form synthetic MSOR data. The resulting dispersion trend of the simulated 

MSOR data is shown in Figure 5.8b with and without simulated stacking, along with the 

phase-velocity dispersion image of the unaltered MASW data. The comparison indicates 

that the high-frequency dispersion data of MSOR is not in good agreement with that of 

MASW, especially when stacking is not used (Figure 5.8b). The effect of the inconsistent 

impacts is to reduce the useful frequency range of the dispersion data from approximately 

20 kHz to approximately 6 kHz. 
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a) 

 

b) 

 
Figure 5.8 a) Field data of MASW test; b) Comparison of experimental dispersion trends 

for MASW data and simulated MSOR data obtained by applying normally distributed 
lags to MASW data. (MASW dispersion image in color contour; MSOR without stacking 

in white dots; MSOR with stacking in white circles.) 

5.6 Real-world Case Study: MSOR vs. MASW Tests on Asphalt Pavement 

The equipment and DAQ program developed for MASW and MSOR testing were 

used on an asphalt pavement on the Iowa State University campus (Figure 5.9). MSOR 

data were recorded with receiver stations from 0.08 to 0.40 m in 0.04 m increments 

(Figures 5.10a and 5.10c). MASW data were also recorded on the same pavement with 

impact stations from 0.04 to 0.36 m in 0.04 m increments (Figures 5.10b and 5.10d). The 

dispersion trend of the MSOR test is also overlaid in the form of white dots on the 

MASW dispersion image Figure 5.10d. The MSOR dispersion trend agrees with that of 

MASW up to approximately 7.5 kHz. Beyond this frequency, however, the MSOR phase-

velocity spectrum does not exhibit a clear dispersion mode. 
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a)  

b)   

Figure 5.9 Typical field setups for pavement tests: (a) MSOR and (b) MASW. 
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a)

 

b)

 
c)

 

d)

 
Figure 5.10 a) Field data of MSOR test; b) Field data of MASW test; c) Experimental 

dispersion image of MSOR test; d) Experimental dispersion image of MASW test (White 
dots are the MSOR maximum intensity at each frequency from 10c.). 

The hybrid Genetic-Simulated Annealing (GSA) inversion program presented in 

Chapter 8 was used to back-calculate the pavement profile in terms of layer thickness and 

shear wave velocity, using the maxima of the MSOR and MASW experimental 

dispersion images of Figure 5.10c (up to 7.5 kHz) and Figure 5.10d (up to 20 kHz) as the 

target dispersion curves in the optimization. The target dispersion curves were then 

compared against the theoretical dispersion curves of the final converged profiles over a 

frequency range of 20 kHz (Figure 5.11a). In the high frequency range beyond 5 kHz, the 

theoretical dispersion curve of MSOR inversion has higher phase velocities than the 

experimental MASW dispersion curve, whereas the theoretical dispersion curve of 
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MASW inversion has better agreement with the experimental counterpart. A statistical 

analysis of the surface layer’s shear-wave velocity was performed using the MASW and 

MSOR data with twenty inversion trials each. The MASW data resulted in a much 

smaller deviation in the estimated shear wave velocity than the MSOR data, although the 

average velocities are close for the two methods (Figure 5.11b). 

a)

 

b)

 

Figure 5.11 a) Comparison of dispersion curves; b) Boxplots of the shear wave velocity 
of the surface layer (VS1) from MASW and MSOR inversions (central mark is median, 

diamond is mean, box edges are 25th and 75th percentiles, whiskers extend to most 
extreme data points not considered outliers). 

5.7 Conclusions 

The custom-developed equipment and DAQ program can enable surface wave 

testing of pavements with great efficiency and relatively low cost. Use of a putty strip 

with a grease coating offers advantages of effective coupling of accelerometers to 

pavement, convenient sensor locating, and simple decoupling. It was demonstrated that 

slight variations in impact locations in MSOR testing can have a significant effect on the 

high-frequency dispersion data. For the methods used in this study, MASW was found to 

enable measurement of dispersion data to much higher frequencies than MSOR. 

Inversion of MASW and MSOR dispersion data indicated that MASW tests result in less 

uncertainty in characterizing the stiffness (velocity) of the surface layer. 
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 MULTI-MODE RAYLEIGH WAVE PROFILING BY CHAPTER 6.

MINIMALLY-INVASIVE METHODS 

6.1 Abstract 

To improve the accuracy of shallow seismic shear-wave velocity profiling, a 

hybrid minimally-invasive multimodal surface wave (MMSW) method is proposed, 

which enhances the detection of higher modes of Rayleigh wave dispersion data. The 

new method combines techniques from the multi-channel analysis of surface waves and 

multi-channel simulation with one receiver (MSOR) methods to record components of 

Rayleigh wave motion at the surface as well as at shallow depths within the soil mass.  

The performance of the proposed method is demonstrated through computational 

and experimental studies. It is shown that individual modes of Rayleigh waves can 

exhibit different dominant depths at which their motion is most significant. This is 

illustrated through a numerical study of eigenvectors of layered soil profiles via the 

stiffness matrix method detailed in Chapter 2, and confirmed by a finite element 

simulation of the apparent dispersion trends recorded at shallow depths using the MSOR 

testing method detailed in Chapter 4. Upon superimposing dispersion data recorded via 

the receivers at various depths in the soil, the resulting multi-mode dispersion data is used 

in a multi-objective inverse analysis, for which the difference between experimental and 

theoretical dispersive phase-velocity spectra are minimized for multiple modes 

simultaneously. In the numerical study, the resulting inverted profiles and theoretical 

dispersion data are shown to have improved accuracy relative to single-mode inversion. 

Preliminary field tests are performed using the new hybrid method, and the results are 
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shown to support the conclusions of the numerical study and confirm the feasibility of the 

proposed technique.  

While the use of multiple modes in surface wave testing is not new, the proposed 

hybrid method can provide more accurate and complete multi-modal dispersion data than 

achieved with surface-only Rayleigh wave methods. As a result, errors due to 

misidentification or partial measurement of higher modes may be minimized, thus 

reducing statistical uncertainty in the inverted profiles.  

By reversing the role of surface impacts and borehole receivers in the new 

MMSW method, an equivalent method employing standard penetration test (SPT) 

hammer blows as borehole impact sources was also developed. This variant is termed the 

MMSW-SPT method, and uses a multichannel seismograph with an array of geophones 

on the soil surface for measuring more complete multimode Rayleigh-wave motions 

caused by SPT impacts applied at the soil surface as well as at shallow depths within the 

soil. Due to the prevalence of SPT testing on construction sites, the hybrid MMSW-SPT 

method can enable more accurate and complete measurement of higher modes than 

surface-only methods such as MASW, with improved economy and efficiency relative to 

the single-receiver MSOR variant of the MMSW method. 

6.2 Introduction 

For surface-wave methods, the quality of experimental dispersion data is of 

critical importance to infer accurate site profiles in terms of layer thicknesses and shear-

wave velocities. Layered soil profiles inherently possess multi-mode dispersion 

characteristics, which include complete information on the soil profile. However, in the 

analysis of dispersion data from surface-wave testing, if one selects only the Rayleigh-
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wave component that is dominant at each frequency, then a single “apparent dispersion 

curve” will be obtained. The apparent dispersion curve is comprised of a fundamental-

mode curve for “regular” soil sites for which velocity increases gradually with depth, or a 

combination of several modes for irregular profiles which contain velocity inversions, 

i.e., fast over slow layers (e.g., see Nazarian 1984, Gucunski and Woods 1992, Stokoe et 

al. 1994, Park et al. 1999a, Xia et al. 1999, Louie 2001, Ryden 2004, Lu et al. 2007, 

Wong et al. 2011). The single apparent dispersion curve contains only a fraction of the 

available information on the soil profile contained in the data, and thus limits the 

resolution and accuracy of the inversion results.  

Previous studies have demonstrated that higher-mode Rayleigh waves not only 

provide information for greater depths than the fundamental mode, but also improve the 

accuracy of the inverted shear-wave velocity (VS ) profile, and improve the stability and 

resolution of the inversion calculations (e.g., Tokimatsu et al. 1992, Xia et al. 2000, 2003, 

Beaty et al. 2002, Song et al. 2007, Supranata 2006, Luo et al. 2007). However, non-

invasive measurement of multi-mode dispersion data from surface waves is challenging 

for a number of reasons. First, wave trains can be very close together and can even 

overlap (Crampin and Bath 1965), and different modes may have approximately equal 

group velocities (Nolet and Panza 1976). Second, the presence of a rigid stratum or stiff 

layer can cause a higher Rayleigh mode to become dominant at low frequencies, shifting 

the apparent dispersion curve from the fundamental to the higher mode (Karray and 

Lefebvre 2010). Even when the fundamental mode appears to be clearly captured, its use 

in a fundamental-mode inversion can fail to accurately determine the velocity of bedrock 

(Casto et al. 2010). Analysis of higher modes is thus crucial for accurate determination of 
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bedrock depth as well as identification and isolation of the fundamental mode in general. 

Third, it can be difficult to measure higher modes because they can be much less 

energetic than the fundamental mode (Socco et al. 2010).  

The frequency-wave number (f-k) method can be used to extract multi-mode 

dispersion data from measured surface waves, particularly if a long geophone array is 

used, which aids in separating higher modes with small differences in wavenumber 

(Gabriels et al. 1987, Stokoe et al. 2004). The f-k method can also be used with 

conventional arrays (e.g., 24 to 48 geophones with spacing of a few meters), although 

wavenumber resolution ∆k = π/X improves with increasing total array length X (Foti et al. 

2002). If several hundred traces and large receiver spreads of several hundred meters are 

used, significant lateral variation in material properties may be incurred for the depth 

scales considered in near-surface profiling (Park et al. 1999b). Additionally, it can be 

seen from various studies that receiver arrays longer than 250 m (Stokoe et al. 2004), 330 

m (Gabriels et al. 1987), 600 m (Vanneste et al. 2011), or 2000 m (Klein et al. 2005) can 

cause the layered profile assumption to become invalid, thus decreasing the reliability of 

the measurements.  

Advantages of more time-consuming and costly borehole methods are their 

greater accuracy since they involve direct measurement of wave propagation times 

between two points, and the fact that they do not require an inversion analysis. The 

primary advantages of surface-wave methods are their non-invasive nature and resulting 

lower cost relative to borehole testing methods, as well as the ability of Rayleigh waves 

to yield soil stiffness information well below the sensor elevation, e.g., to depths on the 

order of 30-50 m for large impact sources, or 75 to over 200 m for Vibroseis sources. 



www.manaraa.com

143 

However, solutions for VS profiles from surface-wave inversion procedures are non-

unique (e.g., Calderón-Macías and Luke 2007), and therefore possess statistical 

uncertainty. Furthermore, if higher modes are not resolved appropriately, they can 

contribute further to this uncertainty, as they may be mistaken for the fundamental mode. 

Significant effort has therefore been focused on detecting higher modes in surface wave 

data to minimize their influence or extract the fundamental mode (e.g., see Park et al. 

2000).  

The Multichannel Analysis of Surface Waves (MASW) method has been 

employed to measure multi-mode Rayleigh waves using relatively short geophone arrays 

of approximately 30 m (e.g., Park et al. 1999b, 2000, Xia et al. 2000, 2003, Song et al. 

2007). However, the resulting multi-mode dispersion data are generally incomplete in the 

frequency range of interest (e.g., Xia et al. 2003, Bergamo et al. 2011), and are unclear at 

some frequencies (Song et al. 2007). Additionally, including such incomplete or unclear 

higher modes in the inversion process can result in an inferior fit of the fundamental 

mode (Casto et al. 2010). A similar technique named the “Modal Analysis of Surface 

Waves method” has also been used to measure higher modes, although this method 

appears to selectively skip many of the higher modes (Karray and Lefebvre 2010). The 

practice of manually picking multi-mode curves from the apparent dispersion data can 

also yield inaccurate target curves for the inversion analysis, introducing significant 

errors into the inverted profiles.  

As is evident from the studies outlined above, the successful measurement and 

effective application of higher Rayleigh-wave modes is a challenge that requires 

advances in experimental and analytical techniques. To this end, a hybrid minimally-
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invasive multimodal surface wave (MMSW) method is proposed herein, which combines 

techniques from MSOR testing, MASW analysis, and borehole or probing methods to 

limited depths. Using the hybrid method, the accuracy with which higher modes can be 

measured is improved relative to surface-only methods. The hybrid method can thus be 

viewed as an enhancement to surface-wave methods by the addition of limited-depth 

borehole measurements, or conversely, as an enhancement of borehole methods by the 

addition of surface-wave data, whereby use of Rayleigh waves extends the profiling 

depth of borehole methods (such as crosshole tests) or probing methods (such as seismic 

cone penetration test (CPT) tests) well below the maximum depth of the sensor. 

6.3  Multi-mode Rayleigh Waves 

Non-invasive surface wave methods employing sensors coupled to the ground 

surface have been widely used to measure Rayleigh waves since the 1980s. An advantage 

of surface wave methods is the relative ease with which Rayleigh wave motion can be 

measured, as this wave type comprises the majority of energy generated from a source on 

the surface. As depth increases, however, the dominant mode of the surface waves will 

attenuate quickly, while the other modes may become increasingly dominant with mode 

shapes that are strongly dependent on the soil profile. This is demonstrated below by 

examining the natural mode shapes of Rayleigh waves with depth, i.e. the natural mode 

shapes of vibration of the layered soil structure. 

6.3.1 Natural mode shapes of Rayleigh waves with depth 

To gain insight into mode shapes of Rayleigh waves with respect to depth, a 

layered soil system defined by the parameters in Table 6.1 was analyzed using the 

Dynamic Stiffness Method (DSM) of Kausel and Roësset (1981). Using the DSM, layer 
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stiffness matrices were calculated and assembled to form a global stiffness matrix as 

defined in Chapter 2, the eigenvectors of which correspond to the mode shapes of the soil 

system (e.g., see Supranata 2006). Theoretical dispersion curves calculated by the 

transfer matrix method (Chapter 2) for the same layered soil system are presented in 

Figure 6.1. The resulting phase velocities (Vph) of four modes of the dispersion curves 

were determined at a frequency of 60 Hz, and the corresponding wavelengths were 

calculated (Table 6.2). Substituting these frequencies and wavelengths into the global 

stiffness matrix of the system gives the mode shapes for the fundamental and three higher 

modes shown in Figure 6.2.  

Table 6.1 Parameters of layered soil model. 

Layer # VS (m/s) Poisson’s ratio, ν Density,  
ρ (kg/m3) 

Layer thickness  
h (m) 

1 150 0.30 1800 2 
2 200 0.30 1800 3 
3 400 0.30 1900 ∞ (half space) 

 

 

Figure 6.1 Theoretical dispersion curves for the layered soil model of Table 6.1. 

Table 6.2 Phase velocity and wavelength of Rayleigh waves at 60 Hz for the soil model 
of Table 6.1. 

Mode # Phase velocity, Vph (m/s) Wavelength, λ=Vph/f (m) 
1 140.7 2.34 
2 197.7 3.29 
3 259.4 4.32 
4 320.7 5.36 
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Figure 6.2 Natural mode shapes of Rayleigh waves at 60 Hz for the layered soil model of 

Table 6.1 (normalized vertical displacement vs. depth). 

The fundamental mode attenuates exponentially with depth, as is expected for 

Rayleigh waves (e.g., Richart et al. 1970). Considering a superposition of all modes, it 

can be seen that the higher-modes will become dominant as depth increases due to the 

decay of the fundamental mode. Conceptually, depending upon the relative amplitudes of 

the various modes, a measurement of soil motion at depth may have significant energy 

contributed by the higher modes and negligible energy from the fundamental mode. 

Therefore, sensors placed at selected depths in the soil profile may be able to record the 

higher-mode Rayleigh waves with improved accuracy due to improved separation from 

the fundamental mode owing to higher signal-to-noise ratios. In contrast, attempting to 
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measure higher mode contributions at the soil surface for this layered system would 

typically result in the fundamental mode dominating the response, reducing the accuracy 

of the higher modes. 

The hypothesis of this study is that sensors placed at shallow depths in the soil 

using a borehole or probe can enable more accurate resolution of higher-mode Rayleigh 

waves, thus improving the accuracy of final inverted VS profiles. A hybrid method is 

therefore proposed which combines aspects of surface-wave and borehole methods. In 

contrast to borehole methods such as suspension logging or cross-hole testing, the 

approach does not limit the depth of profiling to the maximum sensor depth, and only a 

single borehole or probe sounding is needed. Because Rayleigh waves and concepts of 

surface-wave testing are employed, the maximum sensor depth is only a fraction of the 

maximum depth profiled, making the hybrid method more efficient and economical than 

borehole methods, yet possibly more accurate than surface-only methods. 

6.3.2 Sensitivity of multi-mode dispersion images to soil structure 

The Jacobian matrix can be used to assess the sensitivity of the dispersion data to 

soil model parameters (e.g., Xia et al. 1999 and 2003, Luo et al. 2007). The magnitude of 

the Jacobian matrices for the soil model of Table 6.1 demonstrate that the near-surface 

soil generally has the greatest influence on a given Rayleigh-wave mode, with the 

exception of the fundamental mode between 15 and 20 Hz (Figure 6.3). However, for any 

given depth, the higher-modes generally show a greater sensitivity to soil model 

parameters than lower-modes. If only the fundamental mode is used for inversion (Figure 

6.3a), the deep soil structure will have very limited influence on the inversion results. 

That is, the uncertainty of the inverted VS profile will be expected to be greater for the 
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deeper layers. If the higher modes (Figures 6.3b and 3c) are used in the inversion, then 

the deeper layers will exert a greater influence on the inversion results, and VS will be 

expected to have lower uncertainty for the deeper layers. 

a)  

b)  

c)  
Figure 6.3 Magnitude of Jacobian matrices for the soil model of Table 6.1: 

a) fundamental mode, b) first-higher mode, c) second-higher mode. 

6.4 Hybrid Surface-and-borehole Field Testing Procedure  

6.4.1 Multichannel simulation with one-receiver (MSOR) method 

To implement an economical and minimally-invasive field-testing approach for 

measuring higher Rayleigh-wave modes, the multichannel simulation with one-receiver 

(MSOR) method can be used instead of a multi-channel one-source method such as 

MASW. As described in Chapter 4, the MSOR method simply reverses the roles of 

source and receiver in the MASW method, and has been successfully applied to 

nondestructive testing of pavements (Ryden et al. 2002a, 2004, 2006, Olson and Miller 

2010) and soils (Lin and Ashlock 2011). Compared to the MASW method, the MSOR 



www.manaraa.com

149 

method has several advantages: 1) greatly reduced instrumentation costs as only one 

sensor is required; 2) cost savings for data acquisition systems as only two channels are 

needed (one for the geophone and the other for a trigger); 3) the potential to be faster than 

MASW if an automated moveable impact source is available, as set-up time for a string 

of geophones and cables is eliminated; 4) ease in obtaining a 3-D profile as the source 

can readily be moved along different horizontal lines as shown in Figure 6.4, compared to 

reinstalling an entire string of geophones multiple times to cover the whole testing area 

for MASW. The primary requirement of the MSOR method is to obtain a repeatable 

impact source that can generate waves with consistent timing (Park et al. 2002). 

 
Figure 6.4 Schematic of multichannel simulation with one-receiver (MSOR) method. 

6.4.2  Measurement of higher-mode Rayleigh wave motion within the soil 

For measurement of the vertical Rayleigh wave motion at selected shallow depths 

in the soil, a borehole geophone may be used. One potential difficulty when using a 

borehole for such tests is the prospect of collapsing soils such as sands below the water 

table, which would normally require hollow-stem auguring or installation of casing. This 

problem might be avoided if a sensor were inserted in the soil by a probe and used 

measure the unimpeded free-field Rayleigh wave motion within the soil. A standard 

seismic CPT probe would not likely be usable, as the stiffness of CPT rods would 

Geophone

Hammer impact

Source locations
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attenuate the motion and alter the dispersion data. However, a retractable CPT tip with 

embedded accelerometer or geophone which can be temporarily uncoupled from the CPT 

rods may be a useful alternative. 

In the proposed hybrid MMSW method, a sensor is used to measure the ground 

motion at the surface, then at selected depths within the soil, due to surface impacts 

performed over a range of offsets. Alternatively, a string of borehole geophones could be 

used to measure the motion at several depths simultaneously to reduce testing time. The 

initial configuration with the sensor at the surface (before creating a borehole) is the same 

as an MSOR surface wave test. The resulting recorded ground motion can then be used to 

construct a dispersion image using standard MASW analysis procedures. The downhole 

sensor is then lowered to the first selected depth in the soil and the series of impacts 

repeated, giving another dispersion curve. As the sensor is lowered to greater depths, the 

higher modes will begin to dominate the dispersion curves (Figure 6.2). Detailed in the 

following sections are numerical simulations of the MMSW test procedure described 

above, followed by results and interpretation of preliminary field tests.  

6.5  Numerical Simulations 

6.5.1 Finite element simulation of multi-mode Rayleigh wave measurement by 

MMSW approach 

To test the hypothesis that multi-mode Rayleigh waves can be effectively 

measured using the proposed minimally-invasive hybrid approach, the Finite Element 

Method (FEM) was used to simulate MSOR tests in Abaqus 6.10-1 with geophones 

embedded at depths of 0, 1.2, 2.4, and 3.6 meters (Figure 6.5). To model half-space 

radiation conditions, infinite elements were used on the two lateral boundaries as well as 
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underneath the bottom layer. A transient impact was imposed as a step-function for 

velocity over a patch, to simulate the dynamic loading of a sledge hammer on the free 

surface at 24 source locations having a horizontal spacing of 1 m and a first offset of 2 m, 

while the vertical velocity was calculated at the embedded geophone locations. Rayleigh 

waves as well as primary, reflected, and head waves can be clearly seen in the 

displacements (Figure 6.5), although the half-space conditions cannot be simulated 

perfectly by FEM. The resulting MSOR velocity data for the 24 source locations were 

assembled to form multichannel records for each geophone depth, from which dispersion 

data were calculated using the phase-scanning wavefield transformation method of Park 

et al. (1998) to give the dispersion images of Figure 6.6. 

From the simulated dispersion data, apparent Rayleigh wave modes are obtained 

for each geophone measurement depth, and the higher-modes clearly become more 

dominant at higher frequencies as geophone depth increases due to the decay of lower-

mode Rayleigh wave motion. The maxima of the dispersion-images correspond to the 

apparent dispersion curves for each geophone depth (Figure 6.6). It should be noted that 

the dispersion data for the surface sensor corresponds to MASW testing by reciprocity 

with the MSOR method, and does not contain a clear branch of the higher modes (Figure 

6.6a). The apparent dispersion data were superimposed to construct multi-mode 

dispersion curves (Figure 6.7), which are in good agreement with their theoretical 

counterparts from Figure 6.1 obtained via the transfer matrix method. This numerical 

simulation clearly demonstrates that the proposed MMSW testing method for measuring 

multi-mode Rayleigh waves is feasible, provided that an effective field testing procedure 

can be developed. 
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Figure 6.5 Soil model geometry and instantaneous vertical displacements from FEM 
simulation of wavefield propagation in the layered soil model of Table 6.1 for MSOR 

testing with embedded “geophones” (red triangles) and moving source (red dots). 

a)

 

b) 

 
c) 

 

d) 

 
Figure 6.6 Dispersion images from FEM simulation of geophones at four depths: a) 0 m, 

b) 1.2 m, c) 2.4 m, d) 3.6 m. White dots are the maxima. 
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Figure 6.7 Multi-mode dispersion curves for the soil model of Table 6.1: simulated 

experimental (FEM) vs. theoretical (transfer matrix method). 

6.5.2 Multi-mode inversion via genetic simulated-annealing optimization 

In this thesis work, an optimization method was developed which combines the 

Genetic algorithm and Simulated Annealing algorithm for inversion of dispersion data. 

This inversion program was used to back-calculate the soil profile in terms of layer 

thickness and shear-wave velocity for the multi-modal simulated experimental dispersion 

curves of Figure 6.7. For each inversion trial, the first generation of starting models was 

randomly produced within a search space obtained by varying the parameters of the same 

initial model by ±50%. Figure 6.8a shows inversion results for six trials using only the 

fundamental mode as the inversion target, while Figure 6.8b shows results of using the 

first two modes in a multi-objective inversion. The two-mode inversion results in a 

greater number of VS profiles close to the real profile in terms of both VS and layer 

thickness. 

To quantify the inversion accuracy, the inversion error (IR) was calculated in 

terms of the cumulative relative errors of the inverted profiles as 
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where i=1 represents layer thickness, i=2 represents shear-wave velocity, L represents the 

layer number, and N is the total number of layers. Use of the higher-mode dispersion data 

significantly improves the accuracy of the velocities and layer thicknesses, thus reducing 

the inversion error (Figure 6.8, Table 6.3), while a good match of the fundamental mode 

alone does not ensure a good match for the higher modes. For example, although the 

fundamental mode’s root-mean-square error (RMS0) of 3.85 for the fundamental-mode 

inversion (Figure 6.9a) is slightly smaller than the RMS0 error of 4.17 for the two-mode 

inversion (Figure 6.9b), the corresponding errors RMS1 and RMS2 for the first- and 

second-higher modes as well as the average IR (Table 6.3) are nearly twice as high if 

only the fundamental mode is used. Switching from a two-mode to a three-mode 

inversion slightly increased the RMS error of all three dispersion curves (Figure 6.9), but 

decreased the minimum IR as well as the average IR (Table 6.3), thus increasing the 

accuracy of the inverted shear-wave velocity profiles (Figure 6.8). The multi-mode 

inversion provides a good balance between matching the fundamental and higher modes, 

leading to the more accurate inversion results. 
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a)

 

b)

 

c)  

Figure 6.8 Six inversion results for dispersion data of Figure 6.7: a) fundamental-mode 
inversion, b) two-mode inversion, c) three-mode inversion. 

 
Table 6.3 Inversion error (IR). 

Modes used for inversion Inversion trial Average 1st 2nd 3rd 4th 5th 6th 
Fundamental mode 1.264 0.390 1.122 0.409 1.457 1.388 1.001 

Two-modes 0.303 0.716 1.158 0.545 0.303 0.407 0.572 
Three modes 0.506 0.676 0.447 0.421 0.281 0.819 0.525 

Note: Underlined values denote the minimum IRs. 
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a) 

 

b)

 

c)  

Figure 6.9 Dispersion curves and RMS errors for inversion of FEM simulation data for 
profiles having  smallest inversion errors in Table 6.3: a) fundamental-mode inversion, 

b) two-mode inversion, c) three-mode inversion. 

 



www.manaraa.com

157 

6.6  Preliminary MMSW Field Testing with Shallow Borehole Measurements at 

East River Valley 

The hybrid MMSW testing method described above was employed for 

preliminary tests at the East River Valley recreational site in Ames, Iowa (Figure 6.10). A 

4.5 Hz vertical geophone was coupled to the soil surface using a ground spike, and a 

triggered 10 lb sledgehammer source was used to generate Rayleigh waves by impacting 

an aluminum plate resting on the ground surface. A 4-channel LDS Photon II dynamic 

signal analyzer was used for data acquisition, with a sampling interval of 0.78125 msec, 

sample size of 2,048 points, and anti-aliasing filtering for a maximum alias-free 

frequency of 500 Hz. A 3.66 m (12 ft) station separation was used over an offset range 

from 3.66 to 43.89 m (12 to 144 ft), and 10 impacts were performed at each station for 

signal stacking. As mentioned above, the dispersion data for the geophone depth of 0 m is 

theoretically equivalent to an MASW surface-wave test with 12 receivers. However, the 

source and geophone locations are reversed in the MSOR testing method. An 8.3 cm 

(3.25 inch) borehole was hand-augured to a depth of 0.91 m (3 ft) and the geophone was 

inserted into the bottom surface of the borehole using the ground spike and a specially 

constructed insertion and retrieval device (Figure 6.10). Similar tests were then 

performed with geophone depths of 1.83, 2.74, and 3.35 m (6, 9, and 11 ft), giving a total 

of five test depths. 
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a)   b)  

c)  

Figure 6.10 Borehole geophone preparation for MIBS field testing: (a) drilling borehole 
by hand-auger, (b) PVC pipe insertion device for borehole geophone, and (c) borehole 

geophone coupled to bottom of borehole by ground spike. 

The experimental dispersion data for depths of 0 and 0.91 m show a consistent 

fundamental mode from 6 to 35 Hz (Figures 6.11b and 6.11d). As anticipated, with an 

increased geophone depth of 1.83 m, Figure 6.11f clearly shows the appearance of a 

higher mode around 30 Hz which becomes more prominent as sensor depth is increased, 
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and is also accompanied by possible additional higher modes (Figures 6.11h and 6.11j). 

By superimposing the five dispersion images shown in Figure 6.11, the multi-mode 

experimental dispersion curves in Figure 6.12 were obtained, similar to those from the 

FEM simulation. While the tests detailed herein are preliminary, it should be noted that 

the near-surface resolution may be improved by reducing the 3.66 m (12 ft) receiver 

spacing. This would minimize spatial aliasing and far-field effects, and improve the 

quality of dispersion data above 30 Hz. Additionally, dispersion data at frequencies 

below 8 to 10 Hz could be a result of ambient sources, which can result in high apparent 

phase velocities if originating off-line from the receiver spread. For simplicity, the clear 

trend from 6 to 35 Hz in Figure 6.11 will be referred to herein as the fundamental mode, 

but this might not be the true fundamental-mode dispersion trend for the site. This issue 

will be examined in future studies. 

As expected, the presumed fundamental and possibly two higher modes were 

obtained using the embedded geophone (Figure 6.12), whereas the higher modes were 

less clearly defined in the surface-wave test with the geophone at a depth of 0 m (Figure 

6.11b). However, the simple approach of inserting the geophone spike into the bottom of 

a borehole does not provide optimal coupling with the soil, and therefore may reduce the 

signal-to-noise ratio. It is anticipated that proper coupling of the geophone with the soil 

using either a pneumatic bladder, a commercially available borehole geophone, or a 

modified seismic CPT probe as described above will increase the measurement quality of 

the higher modes. 
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a)  b)  

c)  d)  

e)  f)  

Figure 6.11 Stacked, normalized velocity traces from field tests and dispersion images 

obtained from MASW phase scanning method: a) and b) geophone at depth of 0 m, c) 

and d) geophone depth 0.91 m, e) and f) geophone depth 1.83 m, (continued on next 

page). 
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g)  h)  

i)  j)  

Figure 6.11 (continued) g) and h) geophone depth 2.74 m, i) and j) geophone depth 
3.35 m. White dots are the maxima. 

 
Figure 6.12 Multi-mode dispersion data obtained from preliminary MMSW tests. 

To determine the near-surface shear-wave velocity profile of the test site, the first 

two modes of Figure 6.12 were used in the genetic-simulated-annealing inversion 



www.manaraa.com

162 

program with a frequency range of 6 to 30 Hz. Two analyses were performed; the first 

using the fundamental-mode as the optimization objective function, and the second using 

the first two-modes. The two-mode inversion yielded final converged velocity profiles 

with a smaller scatter than the fundamental-mode inversion (Figure 6.13a). A statistical 

analysis of the depth-averaged shear-wave velocities was also performed for the profiles 

of Figure 6.13a, since the average shear-wave velocity in the upper 30 meters (VS30) is 

used in the AASHTO (2009) specifications for bridge design and in many building codes 

for classification of sites according to soil type. The results show that the two-mode 

inversion gives a smaller standard deviation of average velocity than the fundamental-

mode inversion (Figure 6.13b). The multi-mode inversion from the proposed hybrid test 

method thus has the potential to reduce the ambiguity and uncertainty of shear-wave 

velocity profiles used for seismic hazard assessment. 

Similar to the FEM simulation results, a two-mode inversion was found to 

produce a better fit of the experimental first-higher mode than the fundamental-mode 

inversion (Figure 6.14). Furthermore, for both the fundamental and first-higher modes, 

the two-mode inversion resulted in a lower average RMS error and standard deviation 

than the fundamental-mode inversion (Figure 6.15). In particular, the RMS1 error of the 

first-higher mode is significantly reduced for the two-mode inversion compared to the 

fundamental-mode inversion, in terms of both the average value and the distribution 

range (Figure 6.15b). 
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a) 

 

b) 

 

Figure 6.13 Fundamental-mode and two-mode inversions of field data: a) inverted 
profiles, b) box plots of average shear-wave velocity distributions (central mark is 

median, box edges are 25th and 75th percentiles, whiskers extend to most extreme data 
not considered outliers). 

 
a) 

 

b) 

 
Figure 6.14 Experimental dispersion curves compared to theoretical dispersion curves 

of final inverted profiles: a) fundamental-mode inversion (30 trials), b) two-mode 
inversion (30 trials). 
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a) 

 

b) 

 
Figure 6.15 RMS error of inversion for Figure 6.14: a) error of fundamental mode, 
b) error of first-higher mode (central mark is median, box edges are 25th  and 75th 
percentiles, whiskers extend to most extreme data not considered outliers, outliers 

shown as + marks). 

Since the minimally invasive procedure employs sensors embedded in the soil, the 

attenuation of Rayleigh-wave motion with depth is a logical concern. To examine this 

aspect, the amplitude and signal-to-noise ratio of all field data shown in Figure 6.11 was 

analyzed for the range of sensor depths and impact offsets used. As shown in Figure 

6.16a, the amplitude generally attenuates with offset and depth, with minor variations that 

might be attributable to variations in impact energy and ambient noise. Figure 6.16b 

shows the signal-to-noise ratio of all field data, which is affected by both the dominant 

surface waves in Figure 6.11, as well as the noise from the tail-end of the signal traces. 

The signal-to-noise ratio generally decreases with depth and offset distance, but is still 

significant at the greatest employed geophone depth of 3.35 m. This further indicates that 

it is feasible to measure the motion of Rayleigh waves within the soil via the hybrid 

MMSW testing procedure presented herein. It should be noted that the 3.35 m depth of 

the borehole is only 13.4% of the total depth of 25 m of the inverted profile. 
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a) 

 

b)  

 
Figure 6.16 Field test data: a) amplitude, b) signal-to-noise ratio. 

As shown in the numerical and physical examples above, a significant advantage 

of the hybrid MMSW method relative to borehole methods is that the sensor needs to be 

embedded to only a fraction of the total depth profiled. For example, a borehole or probe-

insertion of roughly 4.5 m would be needed for a profile of the upper 30 m for typical 

seismic site classification purposes, compared to the entire 30 m for crosshole, downhole, 

or seismic CPT tests. Additionally, fewer tests would be required compared to the 

borehole and CPT methods, as the hybrid procedure gives global soil properties measured 

over a large receiver-spread area. Finally, the above analyses illustrate the enhanced 

clarity of multi-mode experimental dispersion images of Rayleigh waves by the hybrid 

MMSW method compared to surface-only methods, as well as the reduction in variability 

of the final inverted velocity profiles gained by multi-mode inversion. 
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6.7 Minimally-invasive MSOR Tests for Measuring Multi-mode Dispersion 

Curves 

The preliminary tests in Section 6.6 and Lin and Ashlock (2014a) were achieved 

using a hand-augured borehole up to a maximum geophone depth of 3.35 m (11 ft) at the 

East River Valley site described in the previous section. To examine the method for 

greater depths, additional MSOR tests were conducted at the Geoprobe Systems test site 

in Salina, Kansas (Figure 6.17). A Geoprobe 8140LC direct-push drilling machine was 

used to drill a 8.3 cm (3.25 in) borehole with continuous sampling of the soil profile. A 

geophone was potted with silicone rubber gel inside a 46 mm (1.8 in)  schedule 40 PVC 

threaded well-riser pipe to enable inserting the geophone into the bottom of the borehole 

at depths up to 7.62 m (25 ft) (Figure 6.18). The water table was at a depth of 

approximately 6.71 m (22 ft), and the geophone cable was routed through a series of 

threaded well-riser pipes with holes drilled in them to allow the water to pass through to 

minimize their buoyancy.  

A four-channel LDS Photon II dynamic signal analyzer was used for data 

acquisition, with a sampling interval of 1.333 msec, a sample size of 2,048 points, and an 

anti-aliasing filtering for an alias-free bandwidth of 293 Hz. The borehole was advanced 

to depths of 0, 1.52, 3.05, 4.57, and 7.62 m (0, 5, 10, 15, and 25 ft) using a combination 

of vibratory and direct-push sampling using the Geoprobe rig. Drilling was stopped at 

each of the depths and the geophone was inserted into the bottom of the borehole using 

the ground spike. The PVC pipe was partially buoyant and was attached to the geophone 

during testing. A 3.66 m (12 ft) station separation over an offset range from 3.66 to 43.89 

m (12 to 144 ft) was used for MSOR tests, with seven impacts performed on the soil 
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surface at each station for signal stacking. The MSOR tests were repeated in a similar 

manner for the five test depths. 

a)  

 

b) 

 

Figure 6.17 (a) borehole geophone potted in well-point PVC pipe, (b) MSOR impacts by 
10 lb sledgehammer on aluminum plate 

a)  

 

b) 

 
Figure 6.18 (a) Geoprobe 8140LC, (b) attaching lengths of threaded PVC well-point riser 

pipes to install geophone in bottom of borehole. 

The corresponding experimental data and dispersion images, obtained using the 

PIS method introduced in Chapter 3, are shown in Figure 6.19. Two clear modes are 

evident for a geophone depth of 0 m (i.e., the surface MSOR test). The first mode is the 

fundamental mode (M0), and the second mode could possibly be the first higher (M1) or 
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second higher (M2) mode. This data demonstrates the common problem with ambiguous 

and unclear higher modes in surface wave testing. The discontinuity at 18 Hz indicates 

that the testing site may have trapped soft layers or high damping soils near the surface. 

By superimposing five dispersion images of the field data for the five geophone depths, 

three modes are clearly revealed (Figure 6.20). From these minimally-invasive hybrid test 

procedure results, it can be concluded that the second mode in Figure 6.19b was actually 

the second higher mode (M2), and not the first higher mode (M1). Misidentification of 

this mode as M1 in an inversion analysis would result in significant errors in the inverted 

stiffness profile. 

a)

 

b) 

 

c)

 

d) 

 
 

Figure 6.19 Field data and dispersion images: a) and b) geophone at soil surface, c) and 
d) geophone at 1.52m (5ft) depth, (continued on next page). 
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e) 

 

f) 

 

g) 

 

h) 

 

i) 

 

j) 

 

 (Figure 6.19 continued). Field data and dispersion images: e) and f) geophone at 3.05m 
(10ft) depth, g) and h) geophone at 4.57m (15ft) depth, i) and j) geophone at 7.62m (25ft) 

depth. 
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Figure 6.20 Multi-mode dispersion image obtained from minimally invasive shallow 

borehole measurements in MSOR tests at Geoprobe test site. 

Since the vertical amplitude of Rayleigh-wave motion decays exponentially with 

depth (e.g., Chapter 2; Richart et al. 1970; Kramer 1996), and the minimally invasive 

testing employs geophones embedded at selected depths in the soil, the motion 

attenuation with depth is a key concern. To address this concern, all field data shown in 

Figure 6.19 were used to analyze the amplitude and signal-to-noise ratio for the range of 

sensor depths and impact offsets used. Figure 6.21a shows an attenuation of amplitude 

with offset and depth, with minor variations due to differences in impact energy and 

ambient noise. Based on this figure, the Rayleigh-wave appears to be relatively weak 

when offset increases beyond 10 m or depth increases beyond 3 m. However, the motion 

might be still detectable and useful if a certain signal-to-noise ratio can be obtained. The 

signal-to-noise ratio was calculated by considering the maximum voltage recorded and 

the noise level at the tail end of a given trace. As shown in Figure 6.21b, the signal-to-

noise ratio of all field data generally decreases with depth and offset distance, but is still 

significant at the deepest geophone depth of 7.62 m for offsets up to 30 m. This further 

validates that it is feasible to measure the Rayleigh-wave motion within the soil via the 

minimally invasive testing procedure. For future study, it is suggested that an improved 
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borehole sensor coupling method be used, as the ground spike does not ensure a positive 

connection with the borehole walls. Additionally, the length of pipe resting on the 

geophone prevents it from measuring the unimpeded Rayleigh-wave motion and further 

attenuates the signal. Use of an expandable bladder, mechanical arm, or off-the-shelf 

borehole geophone is recommended. Alternatively, an accelerometer could be mounted in 

a cone penetration test (CPT) probe tip that can be uncoupled from the CPT rods. Some 

of these methods are being evaluated in a current USGS project. 

a) 

 

b) 

 
Figure 6.21 Field test data: a) amplitude, b) signal-to-noise ratio. 

6.8 MMSW-SPT Method 

Another form of the minimally-invasive hybrid surface-and-borehole method is 

proposed by reversing the roles of the surface impacts and borehole receiver in the 

MMSW method presented above, and using Standard Penetration Test (SPT) hammer 

blows as downhole impact sources. A multichannel seismograph is used to record shot 

gathers for an array of geophones on the soil surface due to the SPT hammer impacts in 
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the borehole. In the SPT test, a spit-spoon sampler with an external diameter of 50.8 mm 

(2 in.) and internal diameter of 34.9 mm (1.375 in.) is driven into the soil at the bottom of 

a borehole by a 63.5 kg (140 lb) hammer weight repeatedly dropped a distance of 0.76 m 

(30 in.), typically at a rate of 20 to 40 blows per minute. The number of blows to drive 

the sampler through each of three successive 0.15 m (6 in.) vertical increments is 

recorded, with the sum of the last two increments giving the blow count in blows per foot 

(blows per 0.3 m). Typical SPT hammer systems have an efficiency of 60%, yielding an 

energy of 285 N-m (210 ft-lb) per blow transferred to the soil, neglecting other sources of 

energy loss. Stiffer soils will result in a smaller sampler penetration per blow (higher 

blow count), and thus more effective transfer of stress waves through the soil. 

Based on the reciprocity principle, the role of borehole impacts and surface 

receivers in the MMSW-SPT method should be equivalent to the surface impacts and 

borehole receivers of the MMSW method in terms of characterizing dispersion 

information. The impacts at different depths can excite different dominant modes 

propagating along the surface according to the generation of mode shapes of a lumped-

mass structure based on structural dynamics theory (Chopra 2000). However, surface 

waves in a homogeneous half-space will only appear when the angle formed by the 

vertical and a line from the impact point to the surface receiver is larger than

1sin ( / )R PV Vθ −= , where VR and VP are speeds of Rayleigh waves and P-waves, 

respectively (Ewing et al. 1957), as shown in Figure 6.22. In other words, Rayleigh 

waves will only exist at the soil surface beyond a minimum horizontal distance 

tansx z θ=  from the borehole, where sz  is the depth of the borehole source. The 
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implications of this criteria for multi-layered soil profiles are recommended for further 

study. 

 

Figure 6.22 Minimum distance EP at which a Rayleigh surface wave appears for a 
source at depth zs within a homogeneous half-space media (after Ewing et al. 1957). 

To examine the feasibility of the proposed MMSW-SPT method, an FEM 

simulation was conducted for the soil model of Table 6.1, resulting in dispersion curves 

that agree fairly well with theoretical ones (Figure 6.23).A preliminary field test was then 

conducted using a geophone array at an SPT testing location, with vertical velocities 

recorded along the soil surface for borehole impacts at three selected depths, as detailed 

in the next section.  

 

Figure 6.23 Dispersion curves for FEM simulation of MMSW-SPT test method 
(Theoretical curves from transfer matrix method). 

E P 

S 

zs 

VRt 

VPt θ 



www.manaraa.com

174 

6.8.1 Preliminary MMSW-SPT field test 

Preliminary minimally-invasive hybrid surface-and-borehole tests with an SPT 

hammer source were conducted at the construction site for Fox Run Apartments Phase I, 

near East Iowa Avenue and North 7th Court, in Indianola, Iowa (Figure 6.24). SPT 

testing services were provided by Geotechnical Services, Inc. of Urbandale, Iowa. At the 

time of testing, the site was a former agricultural field saturated by recent rainfall. A 

Geometrics Geode seismograph was used with twenty-four 4.5 Hz vertical geophones at 

a spacing of 2 m and first offset of 6 m. A sampling interval of 0.5 msec was selected, 

with the recordings manually triggered before the SPT hammer was dropped. Shot 

gathers were recorded for single SPT impacts at depths of 0, 1.22, and 2.59 m (0, 4, and 

8.5 ft). The impact on the soil surface at 0 m depth corresponds to a conventional MASW 

test. The 6-meter first offset was estimated to ensure that the first geophone at the surface 

would measure surface waves generated by the deepest impact at 2.59 m (8.5 ft) based on 

consideration of the minimum distance at which Rayleigh waves would first appear, as 

discussed above. A horizontal layered model illustrating the layout of the MMSW-SPT 

tests is shown in Figure 6.25.  
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a)  

b)  
Figure 6.24 Preliminary MMSW-SPT test: a) SPT drill rig and geophone layout, b) SPT 

hammer impacting aluminum plate on the soil surface. 

 
Figure 6.25 Schematic setup of the MMSW-SPT field test with layered earth model and 

impact/geophone locations. 
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Figures 6.26a, 6.26c, and 6.26e show the raw velocity field-data over a length of 

1.2 seconds, which were manually extracted from a total record length of 4 seconds. The 

data were then filtered using a frequency-and-wave-speed filter to minimize signals 

above 70 Hz caused by the SPT drill rig motor, and to retain velocities in the analysis 

range of 50 to 600 m/s. Figures 6.26b, 6.26d, and 6.26f show three dispersion images 

extracted from the filtered data. The dispersion data of the surface impact in Figure 6.26b 

shows a strong mode from 10 to 40 Hz, and two potential fragmented modes or side lobes 

from 25 to 50 Hz at a velocity of approximately 120 m/s, and from 41 to 49 Hz at a 

velocity of approximately 180 m/s. If the traditional surface-only MASW were the only 

test performed at this site, the strong mode in Figure 6.26b would likely be incorrectly 

interpreted as the fundamental mode. The dispersion data of the impact at 1.22 m (4 ft) in 

Figure 6.26d, however, reveals a consistent fundamental mode from 10 to 53 Hz located 

below that of the MASW test, accompanied by strong dispersion information from 5 to 

10 Hz and 15 to 20 Hz. Upon increasing the impact depth to 2.59 m (8.5 ft), the 

dispersion data in Figure 6.26f indicates the lowest mode from 10 to 35 Hz, a first-higher 

mode from 15 to 51 Hz, and second-higher mode from 30 to 65 Hz.  
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a)  b)  

c)  d)  

e)  f)  
Figure 6.26 Stacked, normalized velocity traces from MMSW-SPT field tests and 

dispersion images from PIS analysis: a) and b) geophone at depth of 0 m, 
c) and d) geophone depth 1.22 m, e) and f) geophone depth 2.59 m. 

By superimposing the three dispersion images of Figure 6.26, a three-mode 

composite experimental dispersion image is obtained (Figure 6.27). From this composite 

multi-mode dispersion image, the mode order of the surface-only MASW dispersion 

image in Figure 6.26b can correctly be identified as follows: the low-energy mode from 

25 to 50 Hz is the fundamental mode (M0), the dominant-energy mode from 10 to 40 Hz 

is the first higher mode (M1), and the higher mode from 41 to 49 Hz is the second higher 

mode (M2). 
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Figure 6.27 Superimposed multi-mode dispersion data obtained from MMSW-SPT tests 
with impacts at three depths. 

6.8.2 Inversion results 

To examine the potential error in the near-surface shear-wave velocity profile that 

would result from misidentification of the dominant mode in Figure 6.26b as the 

fundamental mode, this mode was selected as the fundamental mode in the 

SeisImager/SW inversion program from Geometrics, as well as the genetic-simulated-

annealing (GSA) inversion program developed in this study. The three modes identified 

in Figure 6.27 were also used for a multi-mode inversion over a frequency range of 10 to 

65 Hz in the GSA inversion program. A comparison of the inverted profiles is shown in 

Figure 6.28. The fundamental-mode inversion using the misidentified mode from the 

surface-only MASW test gives the shear-wave velocity profile shown as black dashed 

lines for SeisImager/SW and gray solid lines for the GSA program. The three-mode 

inversion from the hybrid MMSW-SPT test data gives the profile shown as black solid 

lines by the GSA program. As demonstrated in this figure, a likely inaccurate irregular 

profile with a velocity inversion is obtained if the apparent mode from the surface-only 

MASW test is misidentified as a fundamental mode, whereas the multi-mode inversion 
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from the MMSW-SPT method yields a more reasonable and likely more accurate regular 

profile. 

    

Figure 6.28 Comparison of inverted shear-wave velocity profiles from MMSW-SPT test. 

Apparent dispersion trends with dominant higher modes, similar to the data of 

Figure 6.26b, are commonly encountered in conventional surface-only MASW tests of 

sites with velocity reversals or high-damping in near surface layers (e.g., Park et al. 2000, 

Xia et al. 2003, O’Neill and Matsuoka 2005, Lu et al. 2007, Moro and Ferigo 2011). For 

such sites, the dominant higher mode might be misidentified as the fundamental mode, 

the inversion of which can give erroneous results as demonstrated in Figure 6.28. The 

proposed MMSW-SPT method employs SPT hammer impacts at selected depths in the 

soil with the goal of exciting surface waves with dominant higher modes recorded by 

geophones at the surface. For unusual sites with highly damped layers near the surface, 

the MMSW-SPT procedure may actually result in a stronger excitation of the 

fundamental mode when the impacts are applied below the surface, as demonstrated by 

the field test detailed above. 
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The MASW data acquisition during SPT testing is fast and economical, and can 

be viewed as a beneficial byproduct for effectively estimating the average shear-wave 

velocity in the first 30 meters (VS30). Additionally, SPT testing is already a very common 

component of site investigations for civil engineering projects. The machine-induced 

ambient vibration noise can be effectively reduced using a frequency-and-speed filter. As 

discussed above, the first receiver offset should be carefully chosen to ensure 

measurement of surface waves generated by the deepest impact. 

6.9  Conclusions 

The eigenvector analysis, numerical simulations, and preliminary field tests 

presented herein demonstrate the feasibility of using embedded sensors at various depths, 

or alternatively, impacts within a borehole, to more accurately measure higher-modes of 

Rayleigh waves in a minimally-invasive manner. As demonstrated in this study, the 

additional information offered by the higher modes can lead to more accurate models of 

the measured soil response as evidenced by improved fits of the higher-mode dispersion 

data, more accurate inverted soil profiles in numerical studies, and reduced variability in 

inverted profiles from field data. As in surface-wave methods, the use of Rayleigh waves 

enables measurement of geological properties well below the maximum sensor or impact 

depth. The advantages of greater accuracy commonly provided by borehole geophysical 

methods are thus combined with the benefit of sounding to depths below the sensor or 

impact elevations as provided by surface-wave methods. With refinements to improve the 

measurement accuracy of the field-testing technique presented herein, it is anticipated 

that the proposed methods can ultimately contribute to the goal of minimizing seismic 

hazard by improving the accuracy and reducing the ambiguity of shallow shear-wave 
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velocity profiles for site response analysis, seismic site classification, and soil-structure 

interaction analyses. 
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 CRITICAL DEPTHS FOR HIGHER MODES CHAPTER 7.

7.1 Abstract 

To measure more complete multi-mode dispersion data and thus improve the 

accuracy of inversion profiles, a minimally-invasive multimodal surface wave (MMSW) 

geophysical testing method was developed in the previous chapter. The new MMSW 

method employs a borehole geophone at selected depths to record seismic waves from a 

moving source on the soil surface. A variant called the MMSW-SPT method was also 

introduced, in which an SPT hammer is used as a borehole impact source while surface 

wave motion is recorded with a multichannel seismograph. The goal of this chapter is to 

develop a procedure for estimating the ranges of optimum geophone depths in MMSW 

tests or optimum depths of borehole impacts in MMSW-SPT tests to capture the higher 

modes. Stiffness matrix and finite element-based numerical simulations of the hybrid 

MMSW testing method are performed to identify the relationships between critical 

geophone depths and apparent cut-off frequencies. A preliminary field test is conducted 

using a vertical geophone placed at five depths while impacts are applied to the soil 

surface over a range of offsets. Dispersion images from the five geophone depths were 

superimposed to produce a dispersion image having three modes with improved clarity 

relative to the surface-only MASW method. A comparison of the experimental and 

theoretical apparent cut-off frequencies of higher modes is used to validate the prediction 

of critical depths by the stiffness matrix method. Matching of such experimental and 

theoretical apparent cut-off frequencies is proposed as additional optimization constraints 

to reduce the uncertainty of final inversion profiles. 
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7.2 Introduction 

Data from geophysical surface wave test methods including spectral analysis of 

surface waves (SASW) and multichannel analysis of surface waves (MASW) has 

traditionally been analyzed in the form of a single apparent dispersion curve, comprised 

of the dominant component at each frequency (e.g., Nazarian 1984, Gucunski 1992, 

Stokoe et al. 1994, Park et al. 1999a, Xia et al. 1999, Cox and Wood 2011, Tran and 

Hiltunen 2011). However, it is well-known that apparent dispersion curves may be 

comprised of branches from multiple modes for irregular sites, such as those with 

velocity reversals. It has been shown that higher modes can have a deeper investigation 

depth than the fundamental mode, and their use can stabilize inversion procedures and 

increase the resolution of inverted S-wave velocities (Xia et al. 2003). A significant body 

of recent research has focused on measurement of higher modes of surface wave 

dispersion patterns and their use in simultaneous multi-objective inversion (e.g., Park et 

al. 1999b, Song et al. 2007, Bergamo et al. 2011).  

Despite these advantages of higher modes, accurate measurement of multi-mode 

dispersion data using surface-only Rayleigh wave methods is challenging because higher 

modes are occasionally skipped, and are generally much less energetic at the surface than 

the fundamental mode (Socco et al. 2010). Long geophone arrays can separate higher 

modes with close phase velocities (Gabriels et al. 1987, Stokoe et al. 2004), but can 

potentially introduce significant lateral variation in near-surface profiles for the depth 

scale of interest (Park et al. 1999b). Although short geophone arrays sometimes record 

multi-mode dispersion data, the modes are generally incomplete in the frequency range of 

interest (e.g., Xia et al. 2003, Song et al. 2007, Bergamo et al. 2011). 
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To capture higher modes of dispersion data more completely and reliably, and 

thus improve the accuracy of near-surface profiling, the minimally-invasive multimodal 

surface wave (MMSW) hybrid testing method was developed as detailed in the previous 

chapter and in Lin and Ashlock (2014a). The new method employs a borehole geophone 

at selected depths to record seismic waves from a moving source on the soil surface. 

While the feasibility of the method has been demonstrated theoretically and 

experimentally in the previous chapter, guidance is needed on selection of the depths at 

which the geophone should be placed to most effectively measure the higher-mode 

Rayleigh waves. 

To identify the critical minimum geophone depth for effective measurement of 

each higher mode, the stiffness matrix and finite element methods are employed in the 

following sections to simulate the minimally-invasive hybrid testing method. For each 

geophone depth analyzed, the stiffness matrix method yields an apparent dispersion 

curve, which is verified by the finite element simulation. The stiffness matrix method is 

used to calculate displacements in the wavenumber domain at selected depths, for 

multiple modes excited by loading applied at the free surface. At each geophone depth, 

the dominant mode is chosen as the one having the largest peak displacement amplitude. 

The critical depth for a given higher mode is then taken as the depth at which that mode’s 

displacement becomes dominant. The hypothesis is that the energy of the first higher 

mode will become dominant in the dispersion data when the geophone is placed at or 

below the critical depth identified for the first higher mode, and so on. A real-word case 

study is carried out to measure multi-mode dispersion data and obtain a final profile upon 

multi-mode inversion. The final profile is then used for stiffness matrix simulation to 
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identify theoretically the critical depths and corresponding apparent cut-off frequencies, 

which are compared to the experimental results. 

7.3 Numerical Simulation of Minimally-invasive Hybrid Method 

A horizontal layered soil model is used to simulate the minimally-invasive hybrid 

testing method (Figure 7.1). Geophones are embedded at four depths of 0, 1.2, 2.4, and 

3.6 meters, and a moving impact is applied sequentially at 24 locations on the soil surface 

with a spacing of 1 m and first offset of 2 m, as in the field tests of Lin and Ashlock 

(2011). 

              

Figure 7.1 Layered earth model and impact/geophone locations for simulation of the 
hybrid minimally-invasive multimodal surface wave (MMSW) test. 

The stiffness matrix method has previously been employed for Rayleigh-wave 

dispersion analysis by Kuasel and Roësset (1981), Gucunski and Woods (1992), Ganji et 

al. (1997), and Ryden and Park (2006), among others. The theory behind the stiffness 

matrix method was covered in detail in Chapter 2, and additional considerations needed 

for the numerical simulation are briefly reviewed here. The structural information of a 

layered soil model is used to compose a global stiffness matrix K by superposing the 

stiffness matrix of each layer, as detailed in Chapter 2. The displacement vector can be 

expressed as 

1( , ) ( , ) ( )k kω ω ω−=U K P  
(7.1) 
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where K(k, ω) is a global stiffness matrix, P(ω) is a unit loading vector, and ( , )k ω U  is a 

displacement vector in the wavenumber (k) and frequency (ω) domains. When the 

applied loading is axisymmetric and vertical with uniform intensity P0 and radius R0, it 

can be transformed from the space and time domains P(r,t) to the wavenumber and 

frequency domains p(k,ω) using Hankel and Fourier transforms, respectively, to give 

0 0
1 0( , ) ( )P Rp k J kR

k
ω = −

 
(7.2) 

where J1 is the Bessel function of the first kind of order 1. Denoting the vertical 

displacement at depth z due to a unit intensity loading P0 at the surface as ( , )z k ω U , the 

total displacement at depth z under the loading p(k,ω) may be written as 

0 0
1 0( , ) ( ) ( , )z z

P Rk J kR k
k

ω ω = −  U U  (7.3) 

This displacement can then be transformed from the wavenumber-frequency domain back 

to the space-frequency domain using the inverse Hankel transform: 

0 0 0 1 0 00 0
( , ) ( , ) ( ) ( ) ( ) ( , )z z zx k kJ kr dk P R J kR J kr k dkω ω ω

∞ ∞
 =  = −  ∫ ∫U U U  (7.4) 

where J0 is the Bessel function of the first kind of order 0. This displacement contains 

dispersion characteristics which can be extracted using the MASW phase-velocity 

scanning method detailed in Chapter 3 (Park et al. 1998, Ryden and Park 2006), i.e. 

1

/( , ) ( , )end phx ix V
z ph zx

S V x dxωω ω =  ∫ e U  (7.5) 

where Vph is the scanning phase-velocity, x1 ≤ x ≤ xend is the horizontal impact-to-receiver 

offset, and Sz is the slant-stack amplitude for each frequency and velocity. Plotting 

Eq. (7.5) for a range of phase velocity and frequency values yields dispersion images, the 
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maxima of which give apparent dispersion curves which can consist of branches from 

multiple modes.  

Dispersion images were calculated for each of the four geophone depths in the 

soil profile of Figure 7.1 using the stiffness matrix and phase-velocity scanning methods 

described above (Figures 7.2a, 7.2c, 7.2e, and 7.2g). Four dispersion images were also 

calculated by finite element simulation of the minimally-invasive hybrid testing method 

using Abaqus 6.10-1 (Figures 7.2b, 2d, 2f, 2h). The dispersion images obtained by the 

stiffness matrix simulation are in good agreement with those obtained by FEM. Both 

simulations yield dispersion images that agree well with theoretical dispersion curves 

calculated by the transfer matrix method (Haskell 1953), shown as solid purple lines in 

Figure 7.2. As discussed in Lin and Ashlock (2014a), the dispersion images for the 

individual geophone depths can be superimposed to obtain a more complete composite 

multi-mode dispersion image for the soil profile than would be obtained with the MASW 

method (represented by Figures 7.2a and 7.2b with the geophone at 0 m depth). 

7.4 Critical Depths for Measurement of Higher Modes 

Since the stiffness matrix method is able to accurately simulate the minimally-

invasive hybrid testing method as demonstrated in Figure 7.2, the derived displacement 

Uz(k,ω) can be used to monitor the transition of the dominant mode as geophone depth 

increases. The displacement Uz(k,ω) in the wavenumber-frequency domain can be 

converted to the displacement Uz(λ,ω) in the wavelength-frequency domain by the 

relation λ=2π/k. For example, Figure 7.3a shows the 60-Hz displacements Uz(λ, 60 Hz) at 

the four geophone depths of the profile of Figure 7.1. For a given frequency, a higher 

mode (higher phase velocity) has a longer wavelength than a lower mode (lower phase 
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velocity). Thus the dominant mode characterized by the largest displacement in Figure 

7.3a shifts from the fundamental mode to the first-higher mode somewhere between 

geophone depths of 1.2 and 2.4 m, then to the second-higher mode between 2.4 and 

3.6 m.  

To more precisely locate the critical geophone depths at which the dominant 

mode shifts, the soil profile was divided into 0.1-m thick layers, and the normalized 

displacements were computed at all layer interfaces, as shown in Figure 7.3b. Using this 

data, the critical depth of the first-higher mode at 60 Hz was found to be 1.75 m, taken as 

the average of 1.7 m (where the fundamental mode is dominant) and 1.8 m (where the 

first-higher mode first becomes dominant). Similarly, the critical depths of the second-

higher and third-higher modes at 60 Hz are 3.25 m and 5.75 m, respectively. A geophone 

should therefore be placed between 1.75 and 3.25 m depth for optimum measurement of 

the first-higher mode with an apparent cut-off frequency of 60 Hz, and between 3.25 and 

5.75 m for optimum measurement of the second-higher mode with an apparent cutoff 

frequency of 60 Hz. That is, below the apparent cutoff frequency for the first-higher 

mode, the fundamental mode will be dominant in the dispersion image. At the apparent 

cutoff frequency for the first-higher mode, the dominant mode in the dispersion image 

will jump from the fundamental to the first-higher mode, and so on. The term “apparent 

cutoff frequency” is used because the higher mode may still exist below this frequency 

value, but it will no longer be the strongest (dominant) mode with the largest 

displacement. This avoids confusion with the term “cutoff frequency” which is defined as 

the lowest frequency for which a given mode can theoretically exist for a given soil 

profile. 
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a)  b)  

c)  d)  

e)  f)  

g)  h)  
Figure 7.2 Dispersion images for layered soil model of Figure 7.1 by stiffness matrix 

(left column) and FEM simulations (right column) of geophone at depths of 0 m 
(a and b), 1.2 m (c and d), 2.4 m (e and f), and 3.6 m (g and h). White dots are maxima of 

the dispersion images. Solid purple dispersion curves by transfer matrix method. 
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a)

  

b) 

 

Figure 7.3 Vertical displacements versus wavelength at a frequency of 60 Hz: a) at four 
selected geophone depths (solid red line denotes the wavelength of the dominant mode 
having the maximum displacement amplitude); b) between 0 and 6 m depth at 0.1 m 

intervals. 

By repeating the above procedure at different frequencies, the critical depths can 

be determined and plotted as a function of frequency, as shown in Figure 7.4 for the soil 

model of Figure 7.1. The three embedded geophone depths used in the simulation are also 

shown for reference. This figure can be used to determine either the required geophone 

depth range for a given higher mode’s displacement to be dominant at a given frequency, 

or the lower apparent cut-off frequency below which the higher mode is no longer 

dominant for a given geophone depth. For example, geophone depths of 0 and 1.2 m for 

this soil model are not sufficient to measure a dominant first-higher mode below 80 Hz, 

which is consistent with the simulation results in Figures 7.2a through 7.2d. A geophone 
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depth of 2.4 m will result in a dominant first-higher mode above an apparent cut-off 

frequency of 36.5 Hz, also consistent with Figures 7.2e and 7.2f. Finally, a geophone 

depth of 3.6 m will give a dominant first-higher mode for frequencies between 30 and 

55.5 Hz, and a dominant second-higher mode above 55.5 Hz, consistent with Figures 

7.2g and 7.2h. These theoretical lower-bound apparent cut-off frequencies from the above 

stiffness-matrix-method displacement analysis compare well with those of the FEM 

simulation (Figures 7.2f and 7.2h), as detailed in Table 7.1. 

 
Figure 7.4 Critical geophone depths for measurement of 1st and 2nd higher modes for 

the layered soil model of Figure 7.1. 

Table 7.1 Geophone depths and apparent cut-off frequencies. 

Geophone 
depth (m) 

Higher 
mode 

Stiffness matrix analysis 
apparent cut-off frequency 

(Hz) 

FEM simulation 
apparent cut-off frequency 

(Hz) 
2.4 1st 36.5 37 
3.6 1st 30 32 
3.6 2nd 55.5 55 

7.5 Field Case Study 

To examine the critical depth for measuring higher modes, a real-word case study 

was carried out using the minimally-invasive hybrid surface-and-borehole method at the 

East River Valley recreational site in Ames, Iowa. A single 4.5 Hz vertical geophone 

with a ground spike was installed at the bottom of a hand-augured borehole at five depths 
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of 0 m, 0.91 m (3 ft), 1.83 m (6 ft), 2.74 m (9 ft), and 3.35 m (11 ft). A triggered 4.5 kg 

(10 lb) sledgehammer source impacting a 25 mm thick aluminum plate was used with a 

3.66 m (12 ft) station separation over an offset range from 3.66 to 43.89 m (12 to 144 ft). 

Ten impacts were performed at each station for signal stacking. A 4-channel LDS Photon 

II dynamic signal analyzer was used for data acquisition, with a sampling interval of 

0.78125 msec and anti-aliasing filtering for a maximum usable frequency of 500 Hz. 

Dispersion images were obtained for each of the five geophone depths using the MASW 

phase-velocity scanning technique. The individual dispersion images were then 

superposed to create a composite multi-mode dispersion image, as shown in Figure 7.5. A 

consistent fundamental mode can be seen from the data for geophone depths of 0 and 

0.91 m. For a depth of 1.83 m, the first-higher mode appears above an apparent cut-off 

frequency of 31 Hz, which decreases to 20 Hz and 19 Hz as the geophone depth increases 

to 2.74 and 3.35 m, respectively. These trends are consistent with the numerical 

simulations presented above. The fundamental and first-higher modes in the frequency 

range of 6 to 30 Hz were used simultaneously in the GSA inversion algorithm of Chapter 

8 to obtain the final shear-wave velocity profile for the site (Figure 7.6). The theoretical 

dispersion curves of the final profile are shown as purple curves in Figure 7.5. 

 
Figure 7.5 Multi-mode dispersion image obtained from MMSW field tests. Solid purple 
dispersion curves are for the inverted profile of Figure 7.6 by the transfer matrix method. 
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Figure 7.6 Final shear-wave velocity profile for field test site determined from two-mode 
inversion. 

The final profile was then used in a stiffness matrix simulation as detailed above 

to identify the theoretical critical depths and corresponding theoretical apparent cut-off 

frequencies. For the first-higher mode, the theoretical cut-off frequencies are 28.5 Hz at a 

geophone depth of 1.83 m, 21 Hz at 2.74 m, and 18 Hz at 3.35 m (Figure 7.7). For the 

second-higher mode, the theoretical cut-off frequency is 36 Hz for the geophone depth of 

3.35 m, while the experimental apparent cut-off frequencies from the dispersion data of 

Figure 7.5 are 36 Hz at a geophone depth of 2.74 m, and 34 Hz at 3.35 m. The 

experimental values generally agree well with the theoretical apparent cut-off 

frequencies, as summarized in Table 7.2. The geophone depth of 2.74 m does not 

intersect the theoretical second-higher mode curve in Figure 7.7, meaning that the 

theoretical apparent cut-off frequency for this depth is greater than 40 Hz. However, the 

experimental data of Figure 7.5 shows a second-higher mode with an apparent cut-off 

frequency of 36 Hz for a geophone depth of 2.74 m. The reason for this disagreement is 

that the inversion of the final profile used only the fundamental and first-higher modes 

between 6 and 30 Hz. Had the final inverted depth profile been determined using a three-
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mode inversion between 6 and 40 Hz, the dispersion curve for the second-higher mode in 

Figure 7.5 would be expected to more closely match the experimental data.  

It should be noted that the critical depth analysis as presented above requires an 

assumed layered soil model as input. Therefore, the comparison of experimental and 

theoretical apparent cut-off frequencies as shown above could be used as additional 

optimization constraints during inversion analyses to further reduce the uncertainty of 

final inversion profiles. However, such further application of the critical-depth analysis is 

beyond the scope of the present study. 

 

Figure 7.7 Theoretical critical depths for higher modes determined from the final profile 
of Figure 7.6. 

Table 7.2 Geophone depths and apparent cut-off frequencies for 1st and 2nd higher 
modes. 

Geophone depth 
(m) Higher mode 

Experimental apparent 
cut-off 

frequency (Hz) 

Theoretical apparent 
cut-off 

frequency (Hz) 
1.83 1st 31 28.5 
2.74 1st 20 21 
3.35 1st 19 18 
2.74 2nd 36 NA 
3.35 2nd 34 36 
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7.6 Conclusions 

A procedure to determine the critical minimum geophone depths needed for 

capturing dominant higher modes of an assumed layered soil model was presented for use 

with a minimally-invasive hybrid surface-and-borehole method. The critical depth 

procedure employs stiffness matrix and phase-velocity scanning analyses, from which the 

critical depth is identified as the depth where the dominant peak of the displacement 

shifts to the next higher mode. The procedure was verified by numerical simulations and 

experimental data to give depths and corresponding apparent cut-off frequencies that 

agree well with those of both simulated and measured multi-mode dispersion images. For 

the regular soil profiles examined, the critical depth at a given frequency is deeper for 

higher modes than for lower modes, and the apparent cut-off frequency of a given higher 

mode decreases as the geophone depth increases. In general, a greater geophone depth 

can capture more dispersion information in terms of additional higher-modes with lower 

apparent cut-off frequencies. It is proposed that the comparison of experimental and 

theoretical apparent cut-off frequencies for embedded geophones could be used in 

inversion analyses for additional optimization constraints to further reduce the 

uncertainty of final inversion profiles. 
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 GENETIC-SIMULATED ANNEALING CHAPTER 8.

OPTIMIZATION FOR SURFACE WAVE INVERSION 

8.1 Abstract 

A new hybrid genetic-simulated-annealing (GSA) optimization algorithm is 

introduced to solve the multivariable minimization problem for surface wave inversion. 

The algorithm is effective for both global and local searches due to its combination of the 

reproduction and selective generation schemes from genetic algorithms (GA) with the 

nonlinear scaling fitness function and perturbation scheme from simulated annealing 

(SA). The hybrid GSA algorithm can reduce the risk of being trapped in a local minimum 

and improve global searching efficiency. A mathematical test function, as well as 

synthetic and real-world surface wave examples, is used to examine the advantages and 

performance of GSA. Comparison of GA, SA, and GSA inversion results demonstrates 

that GSA can yield the smallest uncertainty and greatest efficiency, and improve the 

confidence of using surface wave testing for stiffness profiling. 

8.2 Introduction 

Inversion is the final step in surface wave methods, by which stiffness profiles of 

testing sites are inferred by matching theoretical dispersion curves to their experimental 

counterparts (e.g., Nazarian 1995, Xia et al. 1999, Ryden and Park 2006). The theoretical 

dispersion curve is a nonlinear function of shear-wave velocities, thicknesses, densities, 

and Poisson’s ratios of a horizontally-layered elastic structure. The nonlinear function can 

be solved using matrix methods to obtain the theoretical dispersion curves for a given soil 

profile, which is referred to as the forward problem (e.g., Haskell 1953, Kausel and 

Roësset 1981, Nazarian 1984, Stokoe et al. 1994, Lowe 1995, Gucunski and Maher 2002, 
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Ryden 2004). The experimental dispersion information can be extracted from raw offset-

time field data by using the spectral analysis of surface waves (SASW) method (Nazarian 

1984, Stokoe et al. 1994, Joh 1997), multichannel analysis of surface waves (MASW) 

method (Park et al. 1999a), refraction micrometer (ReMi) method (Louie 2001), MMSW-

borehole geophone or MMSW-SPT methods presented in Chapter 6, or other 

multichannel transforms such as those described in Chapter 3.  

The root mean square (RMS) error is employed herein to quantify the discrepancy 

between the theoretical and experimental curves (e.g., Nazarian 1995). Minimizing RMS 

error is a nonlinear and multivariable optimization procedure, because the theoretical 

dispersion curve is a nonlinear function of the stiffness profile (Yamanaka and Ishida 

1996, Ryden and Park 2006). Thus, inversion is challenging and computationally 

intensive. Commonly used inversion methods include the Levenberg-Marquardt (L-M) 

method (e.g., Nazarian 1995, Xia et al. 1999), genetic algorithm (e.g., Yamanaka and 

Ishida 1996, Yamanaka 2005, Pezeshk and Zarrabi 2005), and simulated annealing 

algorithm (e.g., Iglesias et al. 2001, Ryden and Park 2006).  

The L-M method, as a traditional minimization technique, is based on a 

linearized, damped least-squares method featuring a Jacobian matrix (i.e., partial 

derivatives of inverted parameters) and singular value decomposition (SVD) (Nazarian 

1995). Although the L-M method has been widely applied in surface wave inversion 

(e.g., Nazarian 1995, Xia et al. 1999), it has some limitations, including the challenge of 

estimating an appropriate initial profile (Yamanaka and Ishida 1996, Yamanaka 2005), 

the risk of the solution becoming trapped in a local minimum (Yamanaka and Ishida 

1996), unstable partial derivatives at jumps of apparent dispersion curves (Ryden and 
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Park 2006, Lin and Ashlock 2011), the requirement for choosing appropriate damping 

factors for SVD (Xia et al. 1999), and occasional numerical  instabilities in calculating 

the Jacobian matrix (Yamanaka 2005).  

To overcome the above limitations of the L-M method, global search algorithms 

such as the genetic algorithm (Holland 1975) and simulated annealing algorithm 

(Kirkpatrick et al. 1983, Szu and Hartley 1987), have been successfully applied for 

surface wave inversion by searching for the global minimum without the need for partial 

derivatives (e.g., Yamanaka and Ishida 1996, Iglesias et al. 2001, Yamanaka 2005, 

Pezeshk and Zarrabi 2005, Ryden and Park 2006, Lin and Ashlock 2011). The genetic 

algorithm is a search heuristic for optimization problems that mimics the process of 

natural selection, and tends to converge towards local minima. Simulated annealing is a 

probabilistic meta-heuristic for global optimizations that simulates the cooling of liquids 

to form crystals in metallurgy, with the convergence rate governed by a cooling 

temperature variable.  

The GA and SA algorithms have different and complementary characteristics. 

The GA excels at global searches (Liang and Cui 2000, Yamanaka 2005) with a high 

efficiency (Liang and Cui 2000, Iglesias et al. 2001) and can use previous information to 

configure the search of the next generation effectively (Tang et al. 1996). However, its 

performance is not good for local searches, and it may possibly prematurely convergence 

to a local minimum (Liang and Cui 2000, Yamanaka 2005). The GA algorithm is 

complex due to three main aspects: (1) the requirements of binary conversion, 

reproduction, mutation, and crossover steps (Yamanaka 2005), (2) sensitivity to the 

choice of mutation probability and fitness functions (Franconi and Jennison 1997), (3) 
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and slow convergence for problems with many variables and large population sizes 

(Franconi and Jennison 1997, Li et al. 1999). The SA performance is good for local 

searches (Franconi and Jennison 1997, Liang and Cui 2000, Yamanaka 2005) and can 

achieve small RMS values at final iterations (Iglesias et al. 2001, Yamanaka 2005). The 

SA algorithm is comparatively simple (Yamanaka 2005), robust (Franconi and Jennison 

1997), and has small computer memory requirements (Iglesias et al. 2001). However, its 

performance is not good for global searches (Franconi and Jennison 1997, Liang and Cui 

2000, Yamanaka 2005). 

To overcome the shortcomings of the GA and SA algorithms, a number of hybrid 

GA-SA optimization schemes have been proposed by other researchers as 

complementary strategies to combine the advantages of the two algorithms (e.g., Adler 

1993, Jeong 1996, Tang et al. 1996, Franconi and Jennison 1997, Li et al. 1999, Liang 

and Cui 2000, Krahenbuhl and Li 2004, Zou and Kang 2005, Shan et al. 2006). Four 

main ways have been proposed to combine the GA and SA algorithms: (1) using the 

Metropolis criterion of SA to accept models yielded by GA with a specific probability to 

improve the diversity of searching models (e.g., Adler 1993, Jeong 1996, Tang et al. 

1996, Li et al. 1999, Zou and Kang 2005, Shan et al. 2006); (2) parallel operation of GA 

and SA searches, then using two competing sets of searched models to gain a selective 

generation (Liang and Cui 2000); (3) a series connection of GA and SA with two 

searching steps, first operating a GA search, then passing GA models to SA for further 

searching (Li et al. 1999); and (4) applying the crossover of GA for mating offspring 

models of SA (Franconi and Jennison 1997). Each strategy can improve searching results, 
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but all require intensive computation due to conversion between model parameters and 

binary strings for the mutation and/or crossover steps of GA. 

To improve searching efficiency and quality without increasing computational 

cost, selected aspects of GA and SA were combined in a new way in this investigation to 

formulate a hybrid genetic-simulated-annealing (GSA) optimization algorithm. The GSA 

algorithm combines the cooling and random perturbation schemes of SA with the 

reproduction scheme of GA, and employs the SA nonlinear scaling fitness as a control for 

the GA selection scheme. To improve speed, the GA crossover and mutation schemes 

were not included in the new GSA algorithm. The GA reproduction scheme was included 

in GSA to enable selection of good candidates from the previous generation of models, 

and guide further searches effectively without the need for converting between layer 

parameters and binary strings normally required by GA mutation and crossover schemes. 

The SA nonlinear scaling fitness, which varies with the cooling temperature, was used in 

GSA to improve the diversity of global searches at the beginning and speed up local 

searches at the end. GSA combines a global GA search, followed by the random 

perturbation scheme of SA for stable and efficient local searching. A selective-generation 

GA scheme is also used to select candidates from the reproduced and perturbed models to 

form a new generation while avoiding randomness and blindness of reproduction, and to 

speed up searching. The performance of GSA is demonstrated below using a test function 

and two case studies of surface wave inversion. As will be shown, GSA was found to 

perform well in global and local searches with a computational cost comparable to SA.  
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8.3 Genetic-Simulated Annealing Optimization Algorithm 

Figure 8.1 shows a flowchart of the GSA algorithm for inversion problems, which 

contains the following steps: 

Step 1)  Set up the initial temperature and cooling schedule, and estimate bounds for 

inverted parameters; then randomly generate models as the first generation; 

Step 2)  Calculate dispersion curves and corresponding RMS errors for all models; 

Step 3)  Calculate the probability of reproduction; then reproduce a new generation of 

models (mr); 

Step 4)  Randomly perturb the preceding models to provide a new set of models (mp), and 

calculate their dispersion curves and corresponding RMS errors; 

Step 5)  Check whether any RMS meets the tolerance RMSdesired, or the iteration meets 

the maximum iteration limit; 

Step 6)  Obtain a selective generation from the two sets of models (mr and mp) according 

to their fitness; 

Step 7)  Return to Step 2 if the end condition is not met. 

The procedures for reproduction using the nonlinear scaling fitness, simulated annealing 

perturbation, and selective generation schemes are introduced in detail in the following 

sections. 
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Figure 8.1 Flowchart of the genetic simulated annealing (GSA) algorithm. 

8.3.1 Estimating bounds of inverted parameters 

The bounds of the inverted parameters must first be estimated before a surface-

wave inversion can be performed. The only known information at the starting point is the 

experimental dispersion curve, or set of curves for multi-mode inversions. A given point 

on the dispersion curve will correspond to the wavelength 

/phV fλ =    (8.1) 

where Vph is the phase velocity of the Rayleigh wave component at the frequency f. Due 

to the decay of motion with depth, the majority of the Rayleigh wave energy occurs 

within a depth of one wavelength from the surface, and a representative measurement 

depth is usually recommended as one-half of the wavelength (Heukelom and Forster 

1960, Park et al. 1999a). Surface wave methods are thus commonly viewed as measuring 

the average velocity of the layers in the medium within a depth proportional to the 
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surface wavelength at a given frequency. Therefore, initial profiles are commonly 

generated by assuming that Vph represents the average Rayleigh-wave phase velocity 

within a depth equal to one-half of the Rayleigh wavelength for any point on the 

experimental dispersion curve. Note that the Rayleigh wavelength λ  is defined in the 

horizontal direction of propagation, and the Rayleigh wave motion with depth is usually 

described in terms of /z λ  , i.e. depth normalized by the horizontal wavelength. 

The following procedure was developed in this study to generate initial profiles 

using a stronger theoretical basis than the above general guidelines of using one-half the 

wavelength as the depth for a given point on the dispersion curve. The average shear-

wave velocity of the testing site within a depth one-half wavelength is: 
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where VSj and hj are the shear-wave velocity and thickness of the jth layer, and λi is the 

Rayleigh wavelength, the midpoint of which extends to some depth within the ith layer. 

The shear-wave velocity in the ith layer can be obtained from Eq. (8.2) as 
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Denoting Vph,i as the average Rayleigh-wave velocity within a depth equal to one-half of 

the Rayleigh wavelength, which corresponds to a point inside layer i, SiV can be expressed 

as 

, /Si ph iV V β=  (8.4) 



www.manaraa.com

204 

where β is a factor to convert Rayleigh-wave phase velocity to shear-wave velocity, and 

is a function of Poisson’s ratio. Substituting Eq. (8.4) into Eq. (8.3) gives 
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where Vph,i and iλ  can be obtained from the experimental dispersion curve, hj is layer 

thickness for the initial profile which can be assumed a small constant (e.g., 1 m for 

soils), β is a factor related to Poisson’s ratio (e.g., approximately 0.9 for soils). As 

frequency increases, the wavelength decreases and the dispersion curves typically 

approach a constant and therefore become non-dispersive when the Rayleigh wavelength 

is smaller than the thickness of the first layer. Thus, the shear-wave velocity of the first 

layer can be estimated directly from the experimental dispersion curve as  

1 max( )S phV V f β=  (8.6) 

where max( )phV f is the phase-velocity at the maximum frequency from the experimental 

dispersion data. Substituting Eq. (8.6) into Eq. (8.5) then gives the shear-wave velocity of 

the second layer (VS2), then using the known information of the first and second layer, the 

process is repeated to infer VS3 of the third layer, and so on. Using the known layer 

velocity recursively to infer the next unknown layer velocity for assumed constant layer 

thicknesses (e.g., 1 m) gives the initial shear-wave velocity profile. Adjacent layers found 

to have nearly equal shear-wave velocities can be merged into thicker layers. After 

building the estimated initial shear-wave velocity profile for inversion, the optimization 

search bounds for layer shear-wave velocity and thickness can be specified as 

[ ][1 [1 , 0.1, 0.5Si jV and hα α α α α−    1+ ]×    −    1+ ]×    ∈    (8.7) 

where α is the searching range factor. 
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8.3.2 Probability of reproduction with nonlinear scaling fitness 

In this section, a hybrid scheme is developed which uses the nonlinear scaling 

fitness scheme of SA to control the GA probability of reproduction. The convergence of 

the algorithm is monitored by the root-mean-square (RMS) error (Nazarian 1995): 

( )
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1 ,

f mN
e
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where M is the total number of modes used for inversion, phV is the phase velocity of the 

theoretical dispersion curve, e
phV  is the phase velocity of the experimental dispersion 

curve, and Nf,m is the number of frequency points for the mth mode. In the genetic 

algorithm (Goldberg 1989), models are reproduced according to their fitness f, defined as 

1f
RMS

=
 

(8.9) 

and the normal selection uses the probability of reproduction; 
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where Ng is the total number of models in a generation, and k refers to the kth model. 

Equations (8.9) and (8.10) mean that a model will have a higher probability of 

reproduction to get passed down to the next generation when it has a smaller misfit 

(RMS) and therefore larger fitness. Although undesirable at the beginning of the search, 

it is possible to have some individuals with an extraordinary fitness, who will take over a 

significant part of the generation and lead to a premature convergence. Fitness scaling 

can help solve this problem using the approaches of linear scaling (Goldberg 1989) or 

nonlinear scaling (Li et al. 1999, Hui 2010). The application of annealing temperature in 
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the nonlinear scaling provides the “simulated annealing select” method (Li et al. 1999, 

Hui 2010), for which the probability of reproduction is 
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e
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=
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(8.11) 

where i is the generation number, k refers to the kth individual, fij is the fitness of the jth 

individual in the ith generation, and Ti is the annealing temperature in the ith generation. 

When temperature is high, the reproduction probabilities between different individuals 

are close. This can guarantee that beginning generations have high diversity, which will 

help avoid the solution becoming trapped in a local minimum. When temperature 

decreases, the increasing difference among individuals’ reproduction probabilities can 

speed up searching for the global minimum. 

8.3.3 Simulated annealing perturbation schemes 

In the GSA algorithm, the GA reproduction scheme is used to produce the first 

generation models (mr), and then the SA cooling and random perturbation schemes are 

used to perturb all the models to generate a new generation of models (mp). A common 

SA cooling schedule is 

0
i

iT T a=  (8.12) 

where a is the cooling parameter, and T0 is the initial temperature (Ryden and Park 2006). 

The choices of a and T0 are subjective and application dependent. 

An effective random perturbation scheme for SA is to perturb all parameters once 

in each iteration (Ryden and Park 2006): 
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where 1η  and 2η  are random variables in the interval [-1, 1], and jm∆  is the search 

interval of inverted parameter j. 

8.4 Case Studies 

8.4.1 Mathematical test function 

In this section, the GSA algorithm is applied to search for the global minimum of 

a mathematical test function possessing multiple local minima, which represents the 

property of the misfit function in surface wave inversion (e.g., Ryden 2006, Moro and 

Ferigo 2011). The GA, SA, and GSA algorithms are utilized to search for the global 

minimum of the test function, shown in Figure 8.2 and defined as 

2( ) ( 6) 10cos[2 ( 6)] 10f x x xπ= − − − +  (8.14) 

 

Figure 8.2 Mathematical test function for case study. 

The abscissa of the exact global minimum of the test function in Figure 8.2 has a 

value of 6. The searching histories and results for 1,000 trials using the GA, SA, and 

GSA algorithms are shown in Figure 8.3. The results demonstrate that GA can converge 

to a value rapidly, then exhibits only a small improvement with further iterations, and has 

the lowest probability of converging to the true global minimum. SA has a strong 

fluctuation in error during searching, but a higher probability of converging to the true 

global minimum if a sufficient number of iterations are used. The GSA also exhibits a 

strong fluctuation of error at the beginning, because the simulated annealing selection is 
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utilized to ensure diversity of the generations. However, the GSA error consistently 

decreases with iteration number, while each generation retains some individuals having 

relatively high error to avoid premature convergence. At the end of iterations, GSA 

converges to the true global minimum of the test function with the highest probability of 

nearly 100%. 

a)  

 

b)  

 c) 

 

d)
  

 
e) 

 

f)
  

 
Figure 8.3 Convergence histories of GA (a), SA (c), and GSA (e), and converged 

abscissa values from 1,000 search trials with GA (b), SA (d), and GSA (f). 
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For GSA, a comparison of the normal and simulated annealing selections is 

shown in Figure 8.4 in terms of the reproduction probability versus fitness. The normal 

selection criterion provides different reproduction probabilities for individuals in a 

generation during the entire searching process. At the beginning, if an individual with a 

local minimum dominates one generation by having the highest fitness and reproduction 

probability, successive searching may be trapped in the local minimum. In contrast, the 

simulated annealing selection provides a more uniform reproduction probability at the 

beginning to give individuals a fair chance at becoming parents of a subsequent 

generation. As the annealing temperature decreases, the differences in reproduction 

probability between individuals increase to speed up searching for the global minimum. 

 
 Figure 8.4 Comparison of normal and simulated annealing selections for GSA algorithm 

applied to test function. Left: full-range plot, right: close-up.
 

8.4.2 Surface wave inversion simulation example 

A multi-layer profile with increasing stiffness (Table 8.1) was used to examine 

the efficiency and reliability of the GSA algorithm. The variation of RMS error with VS1 

and VS2, and with h1 and h2 is shown in Figures 8.5a and 8.5b, respectively. By varying 

only one set of parameters at a time (velocities or layer thicknesses), these figures do not 
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reveal the multiple minima of the RMS errors. If all parameters are simultaneously 

varied, the RMS error should exhibit multiple minima. 

a) 

 

b) 

 
Figure 8.5 RMS error: (a) as a function of VS1 and VS2, (b) as a function of h1 and h2. 

Table 8.1 Parameters of layered soil model 
Layer # VS (m/s) VP (m/s) Density, ρ (kg/m3) Layer depth, h (m) 

1 150 303 1800 2 
2 200 403 1800 3 
3 400 807 1900 ∞ (half space) 

To examine the performance of GA, SA, and GSA for the multiple minima 

surface-wave testing inversion problem, the fundamental mode theoretical dispersion 

curve of the soil profile defined in Table 8.1 was calculated using the transfer matrix 

method detailed in Chapter 2. The three optimization methods were then used with 68 

inversion trials each, with a searching range factor 0.5α =  applied to the initial profile 

generated by the procedure of Section 8.3.1. For the GA algorithm, the probabilities for 

the crossover and mutation were set to 0.9 and 0.03, respectively, and 50 generations 

consisting of 45 models each were used. The SA algorithm initial temperature was set to 

T0=40, and an exponential cooling schedule of a=0.985 with 300 iterations was specified. 

For the GSA algorithm, an initial temperature of T0=40 and an exponential cooling 

schedule of a=0.95 were used, with 50 generations consisting of 45 models in each 
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generation. The statistical properties of the inverted parameters from the three 

optimization methods are shown as box plots in Figure 8.6. In the box plots, the central 

horizontal line is the median value, the upper and lower box edges are the 25th and 75th 

percentiles, the whiskers extend vertically to the most extreme data not considered to be 

outliers, and the outliers are shown as + marks. Compared to GA and SA, the uncertainty 

of all five model parameters is lowest with GSA, especially for the three shear-wave 

velocities. Three sets of 68 inverted profiles from each of the GA, SA, and GSA search 

algorithms are shown in Figure 8.7 along with the real profile, from which GSA clearly 

results in the smallest uncertainty. The inversion error defined in Eq. (8.8) (i.e., the 

discrepancy between the final inverted and true profiles) is plotted versus RMS error (i.e., 

the discrepancy between dispersion curves for the inverted and real profiles) in Figure 

8.8. The correlation is very scattered; the inversion error of some points decreases as 

RMS increases, indicating that RMS error in the dispersion curves is not a perfect 

indicator of how well the inverted profile agrees with the true profile. However, the 

overall trend exhibits a decrease in inversion error as the RMS error decreases. 

a)

 

b)

 
Figure 8.6 Box-plots of inverted model parameters from 68 trials using GA, SA, and 

GSA. (a) and (b): shear-wave velocities of the top two layers, (continued on next page) 
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c)  

d)

  

e)

 

Figure 8.6 (continued) (c): shear-wave velocities of the third layers, (d) and (e): 
thicknesses of the top two layers. 

  
Figure 8.7 Inverted and true profiles.  Figure 8.8 Inversion error vs. RMS. 
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8.4.3 Real-world surface wave inversion examples 

8.4.3.1 SASW benchmarking data 

The three optimization algorithms were applied to inversion of one set of field test 

data from the SASW benchmarking data set (Tran and Hiltunen 2011). The chosen test 

used geophone offsets from 98 to 220 ft in the site coordinate system, with the impact 

point at an offset coordinate of 88 ft. Data was collected using a multi-receiver with one 

impact (i.e., MASW) testing method with sixty-two 4.5-Hz vertical geophones, a 

sampling interval of 0.78125 msec, and a triggered sledgehammer. Geophones were 

placed along a straight-line with 10 ft source offset and 2 ft spacing. The pre-trigger delay 

was about 10% of the 12.8 sec total recorded time. A selected part of normalized signals 

are assembled in Figure 8.9a, and the experimental dispersion image with a fundamental 

mode is shown in Figure 8.9b.  

The GA, SA, and GSA inversions all featured 50 trials with a searching range 

factor of 0.4α = . For GA, the probabilities for the crossover and mutation were set to 

0.9 and 0.05, respectively, with 55 generations and 20 models in each generation. For SA, 

an initial temperature of T0=40 was used with an exponential cooling schedule of 

a=0.9962 with 1120 iterations. For the GSA algorithm, an initial temperature of T0=40 

was specified, with an exponential cooling schedule of a=0.95 with 55 generations and 

20 models in each generation. The convergence histories of RMS error and VS30 are 

shown in Figures 8.9c and 8.9d. For GA, the RMS error rapidly reaches a minimum 

while VS30 rapidly converges to a value, and further searching does not reduce RMS or 

change VS30. The values for SA fluctuate widely during the searching process and finally 

converge to a minimum RMS and a VS30 after many iterations. The GSA initially has a 
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diverse range of profiles and gradually converges to a minimum RMS below the 

minimum RMS values of GA and SA, while VS30 converges to a relatively stable value 

quickly. 

a)  

 

b) 

 

 c) 

 

d) 

 
Figure 8.9 a) Field data; b) Experimental dispersion image and inversion dispersion 

curve; c) Convergence history of RMS; d) Convergence history of VS30. 

Figure 8.10 shows the final profiles of the GA, SA and GSA inversions along 

with profiles from other researchers (Martin 2011, Tran and Hiltunen 2011, Zhao 2011). 

All profiles are relatively close to each other in terms of VS30, except the one from Tran. 

Figures 8.11 and 8.12 shows the boxplot of VS30 and RMS from 50 trials of GA, SA, and 

GSA inversions. The GSA algorithm significantly decreases the uncertainty of inversion 
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in terms of VS30. Therefore, if the VS30 is close to a borderline limit for soil classification 

criteria, the GSA can significantly reduce the probability of misclassification. 

 
Figure 8.10 Final converged shear-wave velocity profiles. 

 
Figure 8.11 Boxplots of VS30 from 50-each GA, SA, and GSA inversions. 

 
Figure 8.12 Boxplots of RMS error from 50-each GA, SA, and GSA inversions. 
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8.4.3.2 Data from MMSW-SPT tests 

The multimode dispersion data of Figure 8.13 from the MMSW-SPT tests 

detailed in Chapter 6 were used for inversion analysis. During MMSW-SPT testing, 

seismic cone penetration tests (SCPT) were also performed by Geoprobe. The inverted 

shear-wave velocity profiles using single- and multi-mode inversions with GSA are 

shown in Figure 8.14. The fundamental-mode dispersion curve in Figure 8.13 was used 

from 7 Hz to 18 Hz. The fundamental mode (M0) inversion gives a normal profile with 

increasing stiffness which does not identify the trapped slow layer identified in the SCPT 

profile. Misidentifying the second-higher mode (M2) as the first-higher mode (M1) and 

using the dispersion image up to 30 Hz, the two-mode (M0-M1,misidentified) inversion yields 

an irregular profile with an extraordinarily stiff layer. If the second-higher mode is 

correctly identified, the two-mode (M0-M1) inversion yields a profile having a trapped 

soft layer. However, the inverted soft layer is not in the correct position compared to the 

SCPT profile. Upon using the superimposed dispersion image in Figure 8.13, the three-

mode (M0-M1-M2) inversion gives a profile having a trapped soft-clay layer between 7 to 

10 m, which is in good agreement with the SCPT profile (Figure 8.14). However, relative 

to the surface wave inversion profile, the SCPT data indicates a higher shear-wave 

velocity for the stiff layer overlying the soft layer. 

 
Figure 8.13 Multi-mode dispersion image obtained from MMSW-SPT tests. 
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Figure 8.14 Shear-wave velocity profiles from 1, 2, and 3-mode surface wave inversions 
and SCPT test. 

8.5 Conclusions 

This chapter presents a new hybrid genetic-simulated annealing (GSA) 

optimization algorithm that combines the complementary advantages of genetic 

algorithms and simulated annealing algorithms. Incorporation of the GA reproduction 

scheme with the “simulated annealing select” method into the GSA algorithm can avoid 

premature convergence to a local minimum and speed up global searching, while use of 

the SA perturbation scheme can avoid slow searching performance over multiple 

parameters while assisting in local searches. Results from a mathematical test function 

demonstrate that the GSA algorithm is less likely to become trapped in local minima than 

the GA and SA algorithms. The elimination of GA crossover and mutation schemes along 

with their costly requirements of binary conversion gives GSA a faster speed than GA. 

Good performance of the GSA algorithm was demonstrated using numerical simulations 
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and real examples of surface wave inversion optimization problems. The results indicate 

that: (1) the GSA algorithm can provide stiffness profiles with lower uncertainty than SA 

or GA, (2) taking the average of multiple inversion results is more reliable than using the 

result of one inversion, and (3) the searching methods examined in this chapter appear 

unable to converge to an exact stiffness profile, but rather a profile near the exact one. 
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 CONCLUSIONS AND RECOMMENDATIONS CHAPTER 9.

9.1 General Conclusions 

Although active surface wave methods have developed and improved 

significantly during the past several decades, a wide range of concerns remain regarding 

the accuracy of test results due to issues such as complex 3D wave propagation, 

limitations of testing equipment and procedures, and uncertainty of inverted profiles 

results due to the non-uniqueness of the inversion problem. To advance knowledge for 

active surface wave testing in experimental, theoretical, and computational directions, 

this study developed a number of advancements in all three aspects of active surface 

wave methods: modeling, testing, and inversion. Chapter 2 in Part I presented a 

comprehensive overview of numerical modeling of Rayleigh surface waves by three 

matrix methods and a finite element method. The three matrix methods were 

programmed in MATLAB as forward theoretical dispersion programs for inversion 

analysis. These forward programs can handle not only regular soil structures, but also 

irregular soil structures with embedded high- or low-velocity layers, as well as pavement 

structures having inverse stiffness profiles. Surface-wave propagation was modeled in the 

time-domain utilizing the absorbing layers with increasing damping (ALID) FEM 

simulation technique to simulate half-space boundary conditions and minimize artificially 

reflected energy. 

Surface wave testing results in field data in the space-time domain that contains 

dispersion information on the tested site. The experimental dispersion data are used to 

infer soil structures via inversion algorithms to solve nonlinear multi-variable 

optimization problems. Thus, accuracy in testing methods is essential for obtaining 
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accurate experimental dispersion data, which serves as the target for inversion. To this 

end, Part II dealt with various aspects of surface wave testing, including improvements in 

methods for experimental dispersion analysis, field data acquisition, and higher-mode 

measurement. The new phase-velocity and intercept-time scanning (PIS) method in 

Chapter 3 can extract dispersion information in the form of auto-power spectral values 

with increased resolution and a reduction in side lobes relative to the widely-practiced 

conventional MASW method. As a result, the PIS method can improve certainty and 

increase confidence when interpreting experimental dispersion images, and, in addition, 

require only a simple synchronized trigger, while eliminating the need for the ad-hoc 

assumption that the impact point is the generation point of Rayleigh waves.  

In Chapter 4, the MSOR method is demonstrated to be equivalent to MASW in 

terms of characterizing dispersion information, provided consistent impacts can be 

achieved. The MSOR method is promising for reducing instrumentation costs and 

improving portability, especially for site investigation in remote areas or for post-disaster 

characterization immediately after earthquakes before ground conditions change. The 

hybrid minimally-invasive surface-and-borehole methods developed in this study enable 

improved measurement of multi-mode dispersion curves with a relatively short testing 

spread. Chapter 5 presents a computational and experimental study on seismic stiffness 

profiling of pavements using the MASW and MSOR testing procedures. A new custom-

programmed data acquisition system for MASW and MSOR testing using MATLAB 

software and National Instruments hardware was developed. The system can enable 

surface wave testing of pavements with efficiency and relatively low cost. MASW was 

found to enable measurements of dispersion data for pavements to higher frequencies 
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than MSOR by avoiding significant degradation of high-frequency dispersion data due to 

slight variations in impact locations.  As result, MASW was demonstrated to reduce 

uncertainty in characterizing the stiffness of the pavement surface layer relative to MSOR 

testing. 

The hybrid MMSW-borehole geophone and MMSW-SPT methods were 

introduced in Chapter 6. These minimally-invasive testing methods can more accurately 

measure higher modes of Rayleigh waves by using embedded borehole geophones or 

SPT impacts at selected depths. Superimposing apparent dispersion modes recorded via 

the geophones at selected depths with moving surface impacts, or multichannel surface 

wave motion with SPT hammer impacts at selected depths, the resulting multi-mode 

dispersion data used in a multi-objective inverse analysis result in more accurate inverted 

profiles. Chapter 7 introduced a procedure to estimate the ranges of optimum geophone 

or impact depths for capturing the higher modes with these hybrid methods. Stiffness 

matrix and finite element-based numerical simulations of the hybrid testing method were 

used to identify the relationships between critical geophone depths and apparent cut-off 

frequencies. The critical depth at a given frequency was found to be deeper for higher 

modes than for lower modes, and the apparent cut-off frequency of a given higher mode 

shown to decrease as the geophone depth increases. In general, greater geophone depths 

were shown to capture more dispersion information in terms of additional higher-modes 

with lower apparent cut-off frequencies. 

After field testing for experimental dispersion data collection and forward 

modeling to obtain theoretical dispersion data, the final step is surface wave inversion 

through matching the theoretical dispersion curves to experimental counterparts by 
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optimization methods. Chapter 8 presented a new hybrid GSA optimization algorithm to 

solve the multivariable minimization problem for surface wave inversion. Combining the 

advantages of genetic algorithms and simulated annealing while avoiding some of their 

drawbacks, the GSA algorithm can reduce the risk of being trapped in a local minimum 

and improve global searching efficiency. Case studies demonstrated that the hybrid 

method can yield inversion results with small uncertainty and high efficiency, and 

improve the confidence of using surface wave testing for stiffness profiling. 

9.2 Recommendations for Future Work 

Based on the results of the research in this dissertation, the following 

recommendations are proposed for future studies:  

1. A more comprehensive modeling technique is needed to account for complex 

surface wave propagation accompanied with near/far field effects, circular wave fronts, 

and attenuation in both horizontal and vertical directions in a half space medium. 

Development of a fast and efficient forward modeling program for this purpose will 

require not only breakthroughs in modeling theory, but also increased computational 

power, including parallel computing using supercomputers or more economical desktop 

supercomputers incorporating general purpose computing on graphics processing units 

(GPU). 

2. Measurement of multimode experimental dispersion data is of critical and 

fundamental importance for surface wave methods. Although this study already presents 

a preliminary study on measurement of multimode surface waves using the hybrid 

surface and borehole method, further efforts are needed to computationally and 

experimentally study higher-mode surface waves for easier and faster field testing. 
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Improved methods of coupling borehole receivers or the use of probe-mounted sensors 

which do not require a borehole should be examined. The promising MMSW-SPT 

method should be examined for a range of soil conditions and benchmarked against 

crosshole or downhole seismic tests such as SCPT. For success of this method, the 

minimum distance at which a borehole source results in a surface wave should be better 

understood for layered soil profiles. Additionally, the reciprocity of the  

MMSW-borehole geophone and MMSW-SPT methods should be examined in terms of 

the concepts of critical depth and apparent cutoff frequency presented herein. 

3. Although a large number of inversion methods and programs are available for 

research and practice, the intrinsic non-unique nature of solutions for nondestructive 

testing technologies makes inversion one of the most challenging problems. Global 

searching algorithms have been applied to improve the certainty of final inversion results. 

However, intensive computation requirements and unexpected unreasonable inverted 

profiles prevent further development of the algorithms, especially for real-world 

applications needed by engineers. A faster, intelligent inversion algorithm should be 

developed to solve these challenges. In addition, computational efforts can be made to 

improve the efficiency of intensive global inversion algorithms using parallel programing 

and computing on GPUs. 

4. Surface wave methods have specific applications with certain limitations on 

resolution, regardless of the number of advancements. A quantitative evaluation of the 

resolution of surface wave methods should be conducted to clearly delineate the 

exploration capabilities not only for researchers, but also to help engineers avoid 

misapplication of surface wave methods. 



www.manaraa.com

224 

5. Uniform, open-access benchmarking databases for surface wave testing data 

should be built to unify the effort and intelligence of researchers and engineers 

throughout the world. The SASW Benchmarking Dataset (GEC 2011, Tran and Hiltunen 

2011) and UTexas1 Surface Wave Dataset (Cox et al. 2014) are two available datasets 

contributing towards this goal. More datasets are needed from various site structures 

around the world. It is especially necessary to share the datasets from challenging sites 

and earthquake-affected sites to offer access to all interested researchers, who are willing 

to dedicate their research to the improvement of surface wave methods. 
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APPENDIX: THE HANKEL TRANSFORM AND INVERSE HANKEL 

TRANSFORM 

The two-dimensional Fourier transform and its inverse can be expressed as 
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Noting that the integral of a periodic function over one full period is the same regardless 

of the lower limit of integration and defining
 
u θ φ= − , the inner integral above gives
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The last integral above may be evaluated as (Wylie and Barrett 1982, pp. 596) 

2 cos
00

2 ( )ir ue du J r
π ρ π ρ− =∫  



www.manaraa.com

237 

where 0J  is the Bessel function of the first kind of order 0. Substituting the above result
 

into
 

( , )g ξ η  gives
 

00
( , ) ( ) ( )g rF r J r drξ η ρ

∞
= ∫  

where 
2 2ρ ξ η= + .

 

Based on the above derivation, the Hankel transform can be given as follows: 

00
( ) ( ) ( )G rF r J r drρ ρ

∞
= ∫  

The corresponding inverse Hankel transform is 

( )

2 cos( )

0 0

2 cos( )

0 0

00

1( , ) ( , )
2
1 ( , ) ( )

2
1 ( )

2

( ) ( )

i x y

ir

ir

f x y g e d d

g e d d

G e d d

G J r d

ξ η

π ρ θ φ

π ρ θ φ

ξ η ξ η
π

ξ η ρ ρ φ
π

ρ ρ φ ρ
π

ρ ρ ρ ρ

∞ ∞ +

−∞ −∞

∞ −

∞ −

∞

=

=

 =   

=

∫ ∫

∫ ∫

∫ ∫

∫
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